Skip to main content
Log in

Hadronic molecular states composed of spin-\(\frac{3}{2}\) singly charmed baryons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We investigate the possible deuteron-like molecules composed of a pair of charmed spin-\(\frac{3}{2}\) baryons, or one charmed baryon and one charmed antibaryon within the one-boson-exchange (OBE) model. For the spin singlet and triplet systems, we consider the couple channel effect between systems with different orbital angular momentum. Most of the systems have binding solutions. The couple channel effect plays a significant role in the formation of some loosely bound states. The possible molecular states of \(\Omega_{c}^{\ast}\Omega_{c}^{\ast}\) might be stable once produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Belle Collaboration (S.K. Choi et al.), Phys. Rev. Lett. 91, 262001 (2003)

    Google Scholar 

  2. BaBar Collaboration (B. Aubert et al.), Phys. Rev. Lett. 95, 142001 (2005)

    Google Scholar 

  3. Belle Collaboration (Z.Q. Liu et al.), Phys. Rev. Lett. 110, 252002 (2013)

    Google Scholar 

  4. BESIII Collaboration (M. Ablikim et al.), Phys. Rev. Lett. 110, 252001 (2013)

    ADS  Google Scholar 

  5. Belle Collaboration (A. Bondar et al.), Phys. Rev. Lett. 108, 122001 (2012)

    ADS  Google Scholar 

  6. LHCb Collaboration (R. Aaij et al.), Phys. Rev. Lett. 115, 072001 (2015)

    ADS  Google Scholar 

  7. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rep. 639, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rep. 668, 1 (2016)

    ADS  Google Scholar 

  9. H.X. Chen, W. Chen, X. Liu, Y.R. Liu, S.L. Zhu, Rep. Prog. Phys. 80, 076201 (2017)

    ADS  Google Scholar 

  10. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017)

    ADS  Google Scholar 

  11. F.K. Guo, C. Hanhart, U.G. Meissner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

    ADS  Google Scholar 

  12. S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018)

    ADS  Google Scholar 

  13. N. Kaiser, P.B. Siegel, W. Weise, Phys. Lett. B 362, 23 (1995)

    ADS  Google Scholar 

  14. J.A. Oller, U.G. Meissner, Phys. Lett. B 500, 263 (2001)

    ADS  Google Scholar 

  15. K.P. Khemchandani, H. Kaneko, H. Nagahiro, A. Hosaka, Phys. Rev. D 83, 114041 (2011)

    ADS  Google Scholar 

  16. J.X. Lu, Y. Zhou, H.X. Chen, J.J. Xie, L.S. Geng, Phys. Rev. D 92, 014036 (2015)

    ADS  Google Scholar 

  17. G. Montaña, A. Feijoo, À. Ramos, Eur. Phys. J. A 54, 64 (2018)

    ADS  Google Scholar 

  18. W.H. Liang, J.M. Dias, V.R. Debastiani, E. Oset, Nucl. Phys. B 930, 524 (2018)

    ADS  Google Scholar 

  19. M.B. Voloshin, L.B. Okun, JETP Lett. 23, 333 (1976)

    ADS  Google Scholar 

  20. A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. Lett. 38, 317 (1977)

    ADS  Google Scholar 

  21. N.A. Tornqvist, Z. Phys. C 61, 525 (1994)

    ADS  Google Scholar 

  22. N.A. Tornqvist, Nuovo Cimento A 107, 2471 (1994)

    ADS  Google Scholar 

  23. C.Y. Wong, Phys. Rev. C 69, 055202 (2004)

    ADS  Google Scholar 

  24. X. Liu, S.L. Zhu, Phys. Rev. D 80, 017502 (2009) 85

    ADS  Google Scholar 

  25. F. Close, C. Downum, Phys. Rev. Lett. 102, 242003 (2009)

    ADS  Google Scholar 

  26. G.J. Ding, J.F. Liu, M.L. Yan, Phys. Rev. D 79, 054005 (2009)

    ADS  Google Scholar 

  27. Z.F. Sun, J. He, X. Liu, Z.G. Luo, S.L. Zhu, Phys. Rev. D 84, 054002 (2011)

    ADS  Google Scholar 

  28. N. Li, Z.F. Sun, X. Liu, S.L. Zhu, Phys. Rev. D 88, 114008 (2013)

    ADS  Google Scholar 

  29. L. Zhao, L. Ma, S.L. Zhu, Phys. Rev. D 89, 094026 (2014)

    ADS  Google Scholar 

  30. N. Lee, Z.G. Luo, X.L. Chen, S.L. Zhu, Phys. Rev. D 84, 014031 (2011)

    ADS  Google Scholar 

  31. W. Meguro, Y.R. Liu, M. Oka, Phys. Lett. B 704, 547 (2011)

    ADS  Google Scholar 

  32. N. Li, S.L. Zhu, Phys. Rev. D 86, 014020 (2012)

    ADS  Google Scholar 

  33. L. Meng, N. Li, S.L. Zhu, Phys. Rev. D 95, 114019 (2017)

    ADS  Google Scholar 

  34. L. Meng, N. Li, S.L. Zhu, Eur. Phys. J. A 54, 143 (2018)

    ADS  Google Scholar 

  35. J. Vijande, A. Valcarce, J.M. Richard, P. Sorba, Phys. Rev. D 94, 034038 (2016)

    ADS  Google Scholar 

  36. T.F. Carames, A. Valcarce, Phys. Rev. D 92, 034015 (2015)

    ADS  Google Scholar 

  37. J.J. Wu, R. Molina, E. Oset, B.S. Zou, Phys. Rev. Lett. 105, 232001 (2010)

    ADS  Google Scholar 

  38. Z.C. Yang, Z.F. Sun, J. He, X. Liu, S.L. Zhu, Chin. Phys. C 36, 6 (2012)

    ADS  Google Scholar 

  39. R. Chen, X. Liu, X.Q. Li, S.L. Zhu, Phys. Rev. Lett. 115, 132002 (2015)

    ADS  Google Scholar 

  40. L. Roca, J. Nieves, E. Oset, Phys. Rev. D 92, 094003 (2015)

    ADS  Google Scholar 

  41. Y. Yamaguchi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa, Phys. Rev. D 96, 114031 (2017)

    ADS  Google Scholar 

  42. Y. Shimizu, M. Harada, Phys. Rev. D 96, 094012 (2017)

    Google Scholar 

  43. Y. Yamaguchi, E. Santopinto, Phys. Rev. D 96, 014018 (2017)

    ADS  Google Scholar 

  44. J. Ferretti, G. Galat, E. Santopinto, Phys. Rev. C 88, 015207 (2013)

    ADS  Google Scholar 

  45. J. Ferretti, G. Galat, E. Santopinto, Phys. Rev. D 90, 054010 (2014)

    ADS  Google Scholar 

  46. J. Ferretti, E. Santopinto, arXiv:1806.02489 [hep-ph]

  47. T.M. Yan, H.Y. Cheng, C.Y. Cheung, G.L. Lin, Y.C. Lin, H.L. Yu, Phys. Rev. D 46, 1148 (1992) 55

    ADS  Google Scholar 

  48. Y.R. Liu, M. Oka, Phys. Rev. D 85, 014015 (2012)

    ADS  Google Scholar 

  49. Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  50. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987)

    ADS  Google Scholar 

  51. D.O. Riska, G.E. Brown, Nucl. Phys. A 679, 577 (2001)

    ADS  Google Scholar 

  52. R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    ADS  Google Scholar 

  53. X. Cao, B.S. Zou, H.S. Xu, Phys. Rev. C 81, 065201 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yang.

Additional information

Communicated by E. Oset

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Meng, L. & Zhu, SL. Hadronic molecular states composed of spin-\(\frac{3}{2}\) singly charmed baryons. Eur. Phys. J. A 55, 21 (2019). https://doi.org/10.1140/epja/i2019-12686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12686-5

Navigation