Skip to main content
Log in

Investigation of the 6Li + 40Ca elastic scattering using different folding models

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In the present study we investigate the 6Li + 40Ca elastic scattering through the energy range 26-240MeV in the framework of the optical model and \( \alpha\) -cluster structure of the colliding nuclei. The double folding (DF) calculations for the real central part of the nuclear optical potential are performed by folding the \( \alpha\) -\( \alpha\) and \( \alpha\) -n effective interactions over the density distributions of \( \alpha\) -clusters in the target ( 40Ca nucleus and considering the \( \alpha\) -d structure of the projectile ( 6Li nucleus. The imaginary part of the optical potential is expressed in the phenomenological Woods-Saxon form. The measured angular distributions of the elastic scattering differential cross section have been successfully reproduced using the derived semi-microscopic potentials for nine sets of data all over the measured angular range. However, it is found that introducing a real renormalization factor smaller than unity is essential in order to obtain a successful description of the data at bombarding energies larger than 10MeV/nucleon. The obtained results confirm the validity of the \( \alpha\) -cluster structure to generate a realistic representation of nucleus-nucleus optical potentials. For the sake of comparison, the same considered sets of data are reanalyzed using microscopic DF optical potentials based upon the São Paulo potential. The energy dependence of the corresponding reaction cross sections and real and imaginary volume integrals of the considered reaction are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Watanabe, Nucl. Phys. 8, 484 (1958)

    Article  Google Scholar 

  2. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  3. M.E. Brandan, G.R. Satchler, Phys. Rep. 285, 143 (1997)

    Article  ADS  Google Scholar 

  4. D.T. Khoa, W. Von Oertzen, H. Bohlen, F. Nuoffer, Nucl. Phys. A 672, 387 (2000)

    Article  ADS  Google Scholar 

  5. S. Ohkubo, Y. Hirabayashi, J. Phys. Conf. Ser. 11, 012014 (2008)

    Article  Google Scholar 

  6. W. Zou, Y. Tian, Z.-Y. Ma, Phys. Rev. C 78, 064613 (2008)

    Article  ADS  Google Scholar 

  7. T.L. Belyaeva et al., Phys. Rev. C 82, 054618 (2010)

    Article  ADS  Google Scholar 

  8. Y. Hirabayashi, S. Ohkubo, Phys. Rev. C 88, 014314 (2013)

    Article  ADS  Google Scholar 

  9. M. El-Azab Farid, M.A. Hassanain, Nucl. Phys. A 678, 39 (2000)

    Article  ADS  Google Scholar 

  10. M. El-Azab Farid, M.A. Hassanain, Nucl. Phys. A 697, 183 (2002)

    Article  ADS  Google Scholar 

  11. K.V. Lukyanov, V.K. Lukyanov, E.V. Zemlyanaya, A.N. Antonov, M.K. Gaidarov, Eur. Phys. J. A 33, 389 (2007)

    Article  ADS  Google Scholar 

  12. V.K. Lukyanov, E.V. Zemlyanaya, K.V. Lukyanov, D.N. Kadrev, A.N. Antonov, M.K. Gaidarov, S.E. Massen, Phys. Rev. C 80, 024609 (2009)

    Article  ADS  Google Scholar 

  13. V.K. Lukyanov, D.N. Kadrev, E.V. Zemlyanaya, A.N. Antonov, K.V. Lukyanov, M.K. Gaidarov, Phys. Rev. C 82, 024604 (2010)

    Article  ADS  Google Scholar 

  14. V.K. Lukyanov, D.N. Kadrev, E.V. Zemlyanaya, A.N. Antonov, K.V. Lukyanov, M.K. Gaidarov, K. Spasova, Phys. Rev. C 88, 034612 (2013)

    Article  ADS  Google Scholar 

  15. V.K. Lukyanov, D.N. Kadrev, E.V. Zemlyanaya, K. Spasova, K.V. Lukyanov, A.N. Antonov, M.K. Gaidarov, Phys. Rev. C 91, 034606 (2015)

    Article  ADS  Google Scholar 

  16. V.K. Lukyanov, D.N. Kadrev, E.V. Zemlyanaya, K.V. Lukyanov, A.N. Antonov, M.K. Gaidarov, K. Spasova, Eur. Phys. J. A 53, 31 (2017)

    Article  ADS  Google Scholar 

  17. T. Furumoto, Y. Sakuragi, Phys. Rev. C 74, 034606 (2006)

    Article  ADS  Google Scholar 

  18. D.T. Khoa, G.R. Satchler, W. von Oertzen, Phys. Rev. C 51, 2069 (1995)

    Article  ADS  Google Scholar 

  19. Y. Sakuragi, Phys. Rev. C 35, 2161 (1987)

    Article  ADS  Google Scholar 

  20. Y. Sakuragi, M. Yahiro, M. Kamimura, Prog. Theor. Phys. Suppl. 89, 36 (1986)

    Article  Google Scholar 

  21. Y. Sakuragi et al., Prog. Theor. Phys. 98, 521 (1997)

    Article  ADS  Google Scholar 

  22. R.M. DeVries, D.A. Goldberg, J.W. Watson et al., Phys. Rev. Lett. 39, 450 (1977)

    Article  ADS  Google Scholar 

  23. M. El-Azab Farid et al., J. Phys. G 40, 075108 (2013)

    Article  ADS  Google Scholar 

  24. A.H. Al-Ghamdi, Awad A. Ibraheem, M. El-Azab Farid, Commun. Theor. Phys. 58, 135 (2012)

    Article  ADS  Google Scholar 

  25. M.A. Hassanain, Awad A. Ibraheem, M. El-Azab Farid, Phys. Rev. C 77, 034601 (2008)

    Article  ADS  Google Scholar 

  26. K.H. Bray et al., Nucl. Phys. A 198, 129 (1972)

    Article  Google Scholar 

  27. A.Y. Abul-Magd, M. El-Nadi, Prog. Theor. Phys. 35, 798 (1966)

    Article  ADS  Google Scholar 

  28. V.G. Neudatchin et al., Phys. Lett. B 34, 581 (1971)

    Article  ADS  Google Scholar 

  29. L.R. Gasques et al., Nucl. Phys. A 764, 135 (2006)

    Article  ADS  Google Scholar 

  30. L.R. Gasques et al., Phys. Rev. C 69, 034603 (2004)

    Article  ADS  Google Scholar 

  31. L.C. Chamon et al., Prog. Theor. Phys. Suppl. 154, 169 (2004)

    Article  ADS  Google Scholar 

  32. L.C. Chamon et al., Phys. Rev. Lett. 79, 5218 (1997)

    Article  ADS  Google Scholar 

  33. J.J.S. Alves et al., Nucl. Phys. A 748, 59 (2005)

    Article  ADS  Google Scholar 

  34. D. Pereira et al., Phys. Rev. C 73, 014601 (2006)

    Article  ADS  Google Scholar 

  35. L.C. Chamon, D. Pereira, M.S. Hussein, Phys. Rev. C 58, 576 (1998)

    Article  ADS  Google Scholar 

  36. M.A.G. Alvarez et al., Nucl. Phys. A 656, 187 (1999)

    Article  ADS  Google Scholar 

  37. L.R. Gasques et al., Phys. Rev. C 65, 044314 (2002)

    Article  ADS  Google Scholar 

  38. E.S. Rossi Jr. et al., Nucl. Phys. A 707, 325 (2002)

    Article  ADS  Google Scholar 

  39. L.R. Gasques et al., Phys. Rev. C 67, 024602 (2003)

    Article  ADS  Google Scholar 

  40. T. Tarutina, L.C. Chamon, M.S. Hussein, Phys. Rev. C 67, 044605 (2003)

    Article  ADS  Google Scholar 

  41. L.C. Chamon, Nucl. Phys. A 787, 198 (2007)

    Article  ADS  Google Scholar 

  42. M.A.G. Alvarez et al., Nucl. Phys. A 723, 93 (2003)

    Article  ADS  Google Scholar 

  43. L.R. Gasques et al., Phys. Rev. C 67, 067603 (2003)

    Article  ADS  Google Scholar 

  44. P.R.S. Gomes et al., Phys. Rev. C 70, 054605 (2004)

    Article  ADS  Google Scholar 

  45. M.A.G. Alvarez et al., Nucl. Phys. A 753, 83 (2005)

    Article  ADS  Google Scholar 

  46. P.R.S. Gomes et al., Phys. Rev. C 71, 034608 (2005)

    Article  ADS  Google Scholar 

  47. J.J.S. Alves et al., Braz. J. Phys. 35, 909 (2005)

    Article  ADS  Google Scholar 

  48. P.R.S. Gomes et al., J. Phys. G 31, S1669 (2006)

    Article  Google Scholar 

  49. P.R.S. Gomes et al., Phys. Lett. B 634, 356 (2006)

    Article  ADS  Google Scholar 

  50. M.A. Candido Ribeiro et al., Phys. Rev. lett. 78, 3270 (1997)

    Article  ADS  Google Scholar 

  51. L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002)

    Article  ADS  Google Scholar 

  52. A. Nadasen et al., Phys. Rev. C 47, 674 (1993)

    Article  ADS  Google Scholar 

  53. N.M. Clarke (1994, unpublished)

  54. K.C.C. Pires, S. Appannababu, R. Lichtenthäler, Few Body Syst. 57, 315 (2016)

    Article  ADS  Google Scholar 

  55. A.S. Freitas et al., Braz. J. Phys. 46, 120 (2015)

    Article  ADS  Google Scholar 

  56. A. Nadasen et al., Phys. Rev. C 49, 2258 (1994)

    Article  ADS  Google Scholar 

  57. A. Nadasen et al., Phys. Rev. C 37, 132 (1988)

    Article  ADS  Google Scholar 

  58. G.R. Satchler, Nucl. Phys. A 579, 241 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awad A. Ibraheem.

Additional information

Communicated by P. Capel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar, S.R., Ibraheem, A.A., Abdel-Rahman, E. et al. Investigation of the 6Li + 40Ca elastic scattering using different folding models. Eur. Phys. J. A 54, 235 (2018). https://doi.org/10.1140/epja/i2018-12663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12663-6

Navigation