Skip to main content
Log in

Scattering of charmed baryons on nucleons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Chiral effective field theory is utilized for extrapolating results on the \(\Lambda_{c} N\) interaction, obtained in lattice QCD at unphysical (large) quark masses, to the physical point. The pion-mass dependence of the components that constitute the \(\Lambda_{c} N\) potential up to next-to-leading order (pion-exchange diagrams and four-baryon contact terms) is fixed by information from lattice QCD simulations. No recourse to SU(3) or SU(4) flavor symmetry is made. It is found that the results of the HAL QCD Collaboration for quark masses corresponding to \(m_{\pi} =\) 410 - 570 MeV imply a moderately attractive \(\Lambda_{c} N\) interaction at \(m_{\pi} = 138\) MeV with scattering lengths of \( a\approx -1\) fm for the 1S0 as well as the 3S1 partial waves. For such an interaction the existence of a charmed counterpart of the hypertriton seems unlikely but four- and/or five-baryons systems with a \(\Lambda_{c}\) baryon could be indeed bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

    Article  ADS  Google Scholar 

  2. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017)

    Article  ADS  Google Scholar 

  3. H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, Rep. Prog. Phys. 80, 076201 (2017)

    Article  ADS  Google Scholar 

  4. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rep. 668, 1 (2016)

    Article  ADS  Google Scholar 

  5. H. Noumi, Proposal P50, J-PARC PAC-16, 2013, https://doi.org/j-parc.jp/researcher/Hadron/en/pac_1301/pdf/P50_2012-19.pdf

  6. B. Friman, C. Hohne, J. Knoll, S. Leupold, J. Randrup, R. Rapp, P. Senger, Lect. Notes Phys. 814, 1 (2011)

    Article  ADS  Google Scholar 

  7. U. Wiedner, Prog. Part. Nucl. Phys. 66, 477 (2011)

    Article  ADS  Google Scholar 

  8. Y.R. Liu, M. Oka, Phys. Rev. D 85, 014015 (2012)

    Article  ADS  Google Scholar 

  9. H. Huang, J. Ping, F. Wang, Phys. Rev. C 87, 034002 (2013)

    Article  ADS  Google Scholar 

  10. A. Gal, H. Garcilazo, A. Valcarce, T. Fernández-Caramés, Phys. Rev. D 90, 014019 (2014)

    Article  ADS  Google Scholar 

  11. H. Garcilazo, A. Valcarce, T.F. Caramés, Phys. Rev. C 92, 024006 (2015)

    Article  ADS  Google Scholar 

  12. S. Maeda, M. Oka, A. Yokota, E. Hiyama, Y.R. Liu, Prog. Theor. Exp. Phys. 2016, 023D02 (2016)

    Article  Google Scholar 

  13. R. Shyam, K. Tsushima, Phys. Lett. B 770, 236 (2017)

    Article  ADS  Google Scholar 

  14. K. Ohtani, K.J. Araki, M. Oka, Phys. Rev. C 96, 055208 (2017)

    Article  ADS  Google Scholar 

  15. C.B. Dover, S.H. Kahana, Phys. Rev. Lett. 39, 1506 (1977)

    Article  ADS  Google Scholar 

  16. H. Bando, M. Bando, Phys. Lett. B 109, 164 (1982)

    Article  ADS  Google Scholar 

  17. H. Bando, S. Nagata, Prog. Theor. Phys. 69, 557 (1983)

    Article  ADS  Google Scholar 

  18. B.F. Gibson, G. Bhamathi, C.B. Dover, D.R. Lehman, Phys. Rev. C 27, 2085 (1983)

    Article  ADS  Google Scholar 

  19. S.A. Bunyatov, V.V. Lyukov, N.I. Starkov, V.A. Isarev, Sov. J. Part. Nucl. 23, 253 (1992)

    Google Scholar 

  20. K. Tsushima, F.C. Khanna, Phys. Rev. C 67, 015211 (2003)

    Article  ADS  Google Scholar 

  21. K. Tsushima, F.C. Khanna, J. Phys. G 30, 1765 (2004)

    Article  ADS  Google Scholar 

  22. V.B. Kopeliovich, A.M. Shunderuk, Eur. Phys. J. A 33, 277 (2007)

    Article  ADS  Google Scholar 

  23. A. Hosaka, T. Hyodo, K. Sudoh, Y. Yamaguchi, S. Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017)

    Article  ADS  Google Scholar 

  24. G. Krein, A.W. Thomas, K. Tsushima, Prog. Part. Nucl. Phys. 100, 161 (2018)

    Article  ADS  Google Scholar 

  25. F. Frömel, B. Juliá-Díaz, D.O. Riska, Nucl. Phys. A 750, 337 (2005)

    Article  ADS  Google Scholar 

  26. HAL QCD Collaboration (T. Miyamoto), PoS LATTICE 2015, 090 (2016)

    Google Scholar 

  27. HAL QCD Collaboration (T. Miyamoto), PoS LATTICE 2016, 117 (2017)

    Google Scholar 

  28. T. Miyamoto et al., Nucl. Phys. A 971, 113 (2018)

    Article  ADS  Google Scholar 

  29. S. Aoki, T. Doi, T. Iritani, EPJ Web of Conferences 175, 05006 (2018)

    Article  Google Scholar 

  30. T. Yamazaki, Y. Kuramashi, Phys. Rev. D 96, 114511 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Z. Davoudi, EPJ Web of Conferences 175, 01022 (2018)

    Article  Google Scholar 

  32. S. Aoki, T. Doi, T. Hatsuda, N. Ishii, arXiv:1711.09344 [hep-lat]

  33. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006)

    Article  ADS  Google Scholar 

  34. E. Epelbaum, H.W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  35. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)

    Article  ADS  Google Scholar 

  36. J. Haidenbauer, U.-G. Meißner, Phys. Lett. B 706, 100 (2011)

    Article  ADS  Google Scholar 

  37. J. Haidenbauer, U.-G. Meißner, Nucl. Phys. A 881, 44 (2012)

    Article  ADS  Google Scholar 

  38. J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, W. Weise, Eur. Phys. J. C 77, 760 (2017)

    Article  ADS  Google Scholar 

  39. H. Polinder, J. Haidenbauer, U.-G. Meißner, Nucl. Phys. A 779, 244 (2006)

    Article  ADS  Google Scholar 

  40. J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, Nucl. Phys. A 915, 24 (2013)

    Article  ADS  Google Scholar 

  41. S.R. Beane, M.J. Savage, Nucl. Phys. A 713, 148 (2003)

    Article  ADS  Google Scholar 

  42. S.R. Beane, M.J. Savage, Nucl. Phys. A 717, 91 (2003)

    Article  ADS  Google Scholar 

  43. E. Epelbaum, U.-G. Meißner, W. Glöckle, Nucl. Phys. A 714, 535 (2002)

    Article  ADS  Google Scholar 

  44. E. Epelbaum, U.-G. Meißner, W. Glöckle, arXiv:nucl-th/0208040.

  45. V. Baru, E. Epelbaum, A.A. Filin, J. Gegelia, Phys. Rev. C 92, 014001 (2015)

    Article  ADS  Google Scholar 

  46. V. Baru, E. Epelbaum, A.A. Filin, Phys. Rev. C 94, 014001 (2016)

    Article  ADS  Google Scholar 

  47. S. Petschauer, N. Kaiser, Nucl. Phys. A 916, 1 (2013)

    Article  ADS  Google Scholar 

  48. C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco, Phys. Rev. D 72, 094022 (2005)

    Article  ADS  Google Scholar 

  49. K.U. Can, G. Erkol, M. Oka, T.T. Takahashi, Phys. Lett. B 768, 309 (2017)

    Article  ADS  Google Scholar 

  50. C. Alexandrou, K. Hadjiyiannakou, C. Kallidonis, Phys. Rev. D 94, 034502 (2016)

    Article  ADS  Google Scholar 

  51. Budapest-Marseille-Wuppertal Collaboration (S. Dürr et al.), Phys. Rev. D 90, 114504 (2014)

    Article  ADS  Google Scholar 

  52. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  53. S.R. Beane, P.F. Bedaque, A. Parreño, M.J. Savage, Nucl. Phys. A 747, 55 (2005)

    Article  ADS  Google Scholar 

  54. J.-X. Lu, L.-S. Geng, M. Pavón Valderrama, arXiv:1706.02588 [hep-ph]

  55. G.P. Lepage, arXiv:nucl-th/9706029

  56. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747, 362 (2005)

    Article  ADS  Google Scholar 

  57. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005)

    Article  ADS  Google Scholar 

  58. E. Marji, A. Canul, Q. MacPherson, R. Winzer, C. Zeoli, D.R. Entem, R. Machleidt, Phys. Rev. C 88, 054002 (2013)

    Article  ADS  Google Scholar 

  59. D.R. Phillips, PoS CD 12, 013 (2013)

    Google Scholar 

  60. E. Epelbaum, H. Krebs, U.-G. Meißner, Eur. Phys. J. A 51, 53 (2015)

    Article  ADS  Google Scholar 

  61. E. Epelbaum, J. Gegelia, U.-G. Meißner, Nucl. Phys. B 925, 161 (2017)

    Article  ADS  Google Scholar 

  62. J.C. Berengut, E. Epelbaum, V.V. Flambaum, C. Hanhart, U.-G. Meißner, J. Nebreda, J.R. Pelaez, Phys. Rev. D 87, 085018 (2013)

    Article  ADS  Google Scholar 

  63. A. Nogga, H. Kamada, W. Glöckle, Phys. Rev. Lett. 88, 172501 (2002)

    Article  ADS  Google Scholar 

  64. J. Haidenbauer, U.-G. Meißner, A. Nogga, H. Polinder, Lect. Notes Phys. 724, 113 (2007)

    Article  ADS  Google Scholar 

  65. A. Nogga, Nucl. Phys. A 914, 140 (2013)

    Article  ADS  Google Scholar 

  66. B.F. Gibson, I.R. Afnan, J.A. Carlson, D.R. Lehman, Prog. Theor. Phys. Suppl. 117, 339 (1994)

    Article  ADS  Google Scholar 

  67. K. Miyagawa, H. Kamada, W. Glöckle, V. Stoks, Phys. Rev. C 51, 2905 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Haidenbauer.

Additional information

Communicated by V. Somà

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haidenbauer, J., Krein, G. Scattering of charmed baryons on nucleons. Eur. Phys. J. A 54, 199 (2018). https://doi.org/10.1140/epja/i2018-12638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12638-7

Navigation