Skip to main content
Log in

Magnetic field effects on photon emission in intermediate energy heavy-ion collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Photon production cross section in heavy-ion collisions is estimated by employing the elementary process of proton-neutron bremsstrahlung in a Boltzmann-Uehling-Uhlenbeck model. With taking the electromagnetic field into account for simulating the reactions, the magnetic effects are considered in different impact parameter regions for the collisions of 14N + 208Pb at incident energy of 40 MeV/nucleon in the laboratory system. We investigated the energy spectra, production rates, and the polar angular distributions of photons. In particular, the directed flow \( v_{1}\) and elliptic flow \( v_{2}\) are extracted for both photons and free nucleons. In contrast with unaffected nucleon flows by the magnetic field, photon flows do display magnetic field effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Rafelski, B. Müller, Phys. Rev. Lett. 36, 517 (1976)

    Article  ADS  Google Scholar 

  2. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    Article  ADS  Google Scholar 

  3. M. Asakawa, A. Majumder, B. Müller, Phys. Rev. C 81, 064912 (2010)

    Article  ADS  Google Scholar 

  4. L. Ou, B.A. Li, Phys. Rev. C 84, 064605 (2011)

    Article  ADS  Google Scholar 

  5. A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012)

    Article  ADS  Google Scholar 

  6. W.T. Deng, X.G. Huang, Phys. Rev. C 85, 044907 (2012)

    Article  ADS  Google Scholar 

  7. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  8. B.I. Abelev et al., Phys. Rev. Lett. 103, 251601 (2009)

    Article  ADS  Google Scholar 

  9. B.I. Abelev et al., Phys. Rev. C 81, 054908 (2010)

    Article  ADS  Google Scholar 

  10. D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016)

    Article  ADS  Google Scholar 

  11. K. Hattori, X.G. Huang, Nucl. Sci. Tech. 28, 26 (2017)

    Article  Google Scholar 

  12. G.L. Ma, X.G. Huang, Phys. Rev. C 91, 054901 (2015)

    Article  ADS  Google Scholar 

  13. Q.Y. Shou, G.L. Ma, Y.G. Ma, Phys. Rev. C 90, 047901 (2014)

    Article  ADS  Google Scholar 

  14. X.L. Zhao, Y.G. Ma, G.L. Ma, Phys. Rev. C 97, 024910 (2018)

    Article  ADS  Google Scholar 

  15. J. Chen, D. Keane, Y.G. Ma et al., Phys. Rep. 760, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Peng, G.X. Peng, C.J. Xia et al., Nucl. Sci. Tech. 27, 98 (2016)

    Article  Google Scholar 

  17. M. Ruggieri, G.X. Peng, Nucl. Sci. Tech. 27, 130 (2016)

    Article  Google Scholar 

  18. S.S. Cui, G.X. Peng, Z.Y. Lu et al., Nucl. Sci. Tech. 26, 040503 (2015)

    Google Scholar 

  19. X.G. Deng, Y.G. Ma, Nucl. Sci. Tech. 28, 182 (2017)

    Article  MathSciNet  Google Scholar 

  20. E. Gross et al., Europhys. Lett. 2, 9 (1986)

    Article  ADS  Google Scholar 

  21. W. Bauer et al., Nucl. Phys. A 456, 159 (1986)

    Article  ADS  Google Scholar 

  22. G.H. Liu, Y.G. Ma, X.Z. Cai, D.Q. Fang, W.Q. Shen, W.D. Tian, K. Wang, Phys. Lett. B 663, 312 (2008)

    Article  ADS  Google Scholar 

  23. Y.G. Ma et al., Phys. Rev. C 85, 024618 (2012)

    Article  ADS  Google Scholar 

  24. J. Stevenson et al., Phys. Rev. Lett. 57, 555 (1986)

    Article  ADS  Google Scholar 

  25. C.M. Ko, J. Aichelin, Phys. Rev. C 35, 1976 (1987)

    Article  ADS  Google Scholar 

  26. J. Clayton et al., Phys. Rev. C 40, 1207 (1989)

    Article  ADS  Google Scholar 

  27. H. Nifenecker, J.A. Pinston, Prog. Part. Nucl. Phys. 23, 271 (1989)

    Article  ADS  Google Scholar 

  28. K.K. Gudima et al., Phys. Rev. Lett. 76, 2412 (1996)

    Article  ADS  Google Scholar 

  29. G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 661, 82 (2008)

    Article  ADS  Google Scholar 

  30. E. Migneco et al., Phys. Lett. B 298, 46 (1993)

    Article  ADS  Google Scholar 

  31. H. Nifenecker, J.A. Pinston, Annu. Rev. Nucl. Part. Sci. 40, 113 (1990)

    Article  ADS  Google Scholar 

  32. G.F. Bertsch, H. Kruse, S. Das Gupta, Phys. Rev. C 29, 673 (1984)

    Article  ADS  Google Scholar 

  33. H. Kruse, B.V. Jacak, H. Stöcker, Phys. Rev. Lett. 54, 289 (1985)

    Article  ADS  Google Scholar 

  34. C.Y. Wong, H.H.K. Tang, Phys. Rev. Lett. 40, 1070 (1978)

    Article  ADS  Google Scholar 

  35. W. Bauer, G.F. Bertsch, W. Cassing, U. Mosel, Phys. Rev. C 34, 2127 (1986)

    Article  ADS  Google Scholar 

  36. G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988)

    Article  ADS  Google Scholar 

  37. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  38. M. Veselský, Y.G. Ma, Phys. Rev. C 87, 034615 (2013)

    Article  ADS  Google Scholar 

  39. X.G. Deng, Y.G. Ma, M. Veselský, Phys. Rev. C 94, 044622 (2016)

    Article  ADS  Google Scholar 

  40. V. Voronyuk et al., Phys. Rev. C 83, 054911 (2011)

    Article  ADS  Google Scholar 

  41. A. Bonasera, G.F. Burgio, F. Gulminelli, H.H. Wolter, Nuovo Cimento A 103, 309 (1990)

    Article  ADS  Google Scholar 

  42. T.S. Biro et al., Nucl. Phys. A 475, 579 (1987)

    Article  ADS  Google Scholar 

  43. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962) p. 733

  44. W. Cassing et al., Phys. Lett. B 181, 217 (1986)

    Article  ADS  Google Scholar 

  45. N. Herrmann, J.P. Wessels, T. Wienold, Annu. Rev. Nucl. Part. Sci. 49, 581 (1999)

    Article  ADS  Google Scholar 

  46. Huichao Song, You Zhou, Katarina Gajdosova, Nucl. Sci. Tech. 28, 99 (2017)

    Article  Google Scholar 

  47. Z.Y. He et al., Nucl. Phys. A 598, 248 (1996)

    Article  ADS  Google Scholar 

  48. W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, 663 (1997)

    Article  ADS  Google Scholar 

  49. R. Snellings, New J. Phys. 13, 055008 (2011)

    Article  ADS  Google Scholar 

  50. Y.G. Ma et al., Phys. Rev. C 48, R1492 (1993)

    Article  ADS  Google Scholar 

  51. Y.G. Ma et al., Nucl. Phys. A 787, 611c (2007)

    Article  ADS  Google Scholar 

  52. S. Zhang, Y.G. Ma, J.H. Chen, W.B. He, C. Zhong, Phys. Rev. C 95, 064904 (2017)

    Article  ADS  Google Scholar 

  53. C.L. Zhou, Y.G. Ma, D.Q. Fang et al., Phys. Rev. C 90, 057601 (2014)

    Article  ADS  Google Scholar 

  54. J. Wang, Y.G. Ma, G.Q. Zhang, W.Q. Shen, Phys. Rev. C 90, 054601 (2014)

    Article  ADS  Google Scholar 

  55. L. Ma, G.L. Ma, Y.G. Ma, Phys. Rev. C 89, 044907 (2014)

    Article  ADS  Google Scholar 

  56. S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Ma.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X.G., Ma, Y.G. Magnetic field effects on photon emission in intermediate energy heavy-ion collisions. Eur. Phys. J. A 54, 204 (2018). https://doi.org/10.1140/epja/i2018-12635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12635-x

Navigation