Skip to main content

The P2 experiment

A future high-precision measurement of the weak mixing angle at low momentum transfer

Abstract.

We describe the research and development work for the P2 experiment which aims for a high precision determination of the weak mixing angle \(\sin^{2}\theta_{W}\) to a precision of 0.15% at a four-momentum transfer of \(4.5\times 10^{-3}\) GeV2. This accuracy, comparable to existing measurements at the Z pole, allows for a sensitive test of the Standard Model up to a mass scale of 50 TeV, extendable to 60 TeV. The weak mixing angle is connected to the weak charge of the proton which will be extracted from a measurement of the parity violating cross section asymmetry \(-39.94 \times 10^{-9}\) in elastic electron-proton scattering. A total accuracy of \(0.57 \times 10^{-9}\) is achievable in a measurement time of 11000 h using a 150μA polarized electron beam impinging on a 60 cm liquid hydrogen target. The P2 asymmetry is smaller than any asymmetry measured so far in electron scattering with an unprecedented goal for the accuracy. The use of a solenoid spectrometer with 100% \(\phi\)-acceptance as well as an atomic hydrogen trap polarimeter are new features, which have never before been used in parity-violation experiments. In order to collect the enormous statistics required for this measurement, the new Mainz Energy-Recovering Superconducting Accelerator (MESA) is under construction. Plans for the associated beam control system and the polarimetry are described in this article as well. A liquid hydrogen high-power target with an extremely low noise level of 10 ppm needs to be designed and constructed. We report in addition on the conceptual design of the P2 spectrometer, its Cherenkov detectors, the integrating read-out electronics as well as the ultra-thin, fast tracking detectors. The physics program of the MESA facility comprises indirect, high precision search for physics beyond the Standard Model, measurement of the neutron distribution in nuclear physics, single-spin asymmetries, and a possible future extension to the measurement of hadronic parity violation.

This is a preview of subscription content, access via your institution.

References

  1. 1

    T.D. Lee, C.-N. Yang, Phys. Rev. 104, 254 (1956)

    ADS  Article  Google Scholar 

  2. 2

    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Phys. Rev. 105, 1413 (1957)

    ADS  Article  Google Scholar 

  3. 3

    R.L. Garwin, L.M. Lederman, M. Weinrich, Phys. Rev. 105, 1415 (1957)

    ADS  Article  Google Scholar 

  4. 4

    Ya.B. Zeldovich, Sov. Phys. JETP 36, 964 (1959)

    Google Scholar 

  5. 5

    C.Y. Prescott et al., Phys. Lett. B 77, 347 (1978)

    ADS  Article  Google Scholar 

  6. 6

    M.A. Bouchiat, J. Guena, L. Hunter, L. Pottier, Phys. Lett. B 117, 358 (1982) 121

    ADS  Article  Google Scholar 

  7. 7

    W. Heil et al., Nucl. Phys. B 327, 1 (1989)

    ADS  Article  Google Scholar 

  8. 8

    P.A. Souder et al., Phys. Rev. Lett. 65, 694 (1990)

    ADS  Article  Google Scholar 

  9. 9

    D.B. Kaplan, A. Manohar, Nucl. Phys. B 310, 527 (1988)

    ADS  Article  Google Scholar 

  10. 10

    SAMPLE Collaboration (B. Mueller et al.), Phys. Rev. Lett. 78, 3824 (1997) arXiv:nucl-ex/9702004

    Article  Google Scholar 

  11. 11

    SAMPLE Collaboration (D.T. Spayde et al.), Phys. Rev. Lett. 84, 1106 (2000) arXiv:nucl-ex/9909010

    ADS  Article  Google Scholar 

  12. 12

    SAMPLE Collaboration (S.P. Wells et al.), Phys. Rev. C 63, 064001 (2001) arXiv:nucl-ex/0002010

    Article  Google Scholar 

  13. 13

    SAMPLE Collaboration (R. Hasty et al.), Science 290, 2117 (2000) arXiv:nucl-ex/0102001

    Article  Google Scholar 

  14. 14

    SAMPLE Collaboration (D.T. Spayde et al.), Phys. Lett. B 583, 79 (2004) arXiv:nucl-ex/0312016

    ADS  Article  Google Scholar 

  15. 15

    SAMPLE Collaboration (T.M. Ito et al.), Phys. Rev. Lett. 92, 102003 (2004) arXiv:nucl-ex/0310001

    Article  Google Scholar 

  16. 16

    A4 Collaboration (F.E. Maas et al.), Phys. Rev. Lett. 93, 022002 (2004) arXiv:nucl-ex/0401019

    Article  Google Scholar 

  17. 17

    A4 Collaboration (S. Baunack et al.), Nucl. Instrum. Methods A 640, 58 (2011) arXiv:1102.5640 [nucl-ex]

    Article  Google Scholar 

  18. 18

    P. Achenbach et al., Nucl. Instrum. Methods A 416, 357 (1998)

    ADS  Article  Google Scholar 

  19. 19

    P. Achenbach, S. Baunack, K. Grimm, T. Hammel, D. von Harrach, A. Lopes-Ginja, F.E. Maas, E. Schilling, H. Stroher, Nucl. Instrum. Methods A 465, 318 (2001) arXiv:nucl-ex/0108019

    ADS  Article  Google Scholar 

  20. 20

    F.E. Maas et al., Phys. Rev. Lett. 94, 082001 (2005) arXiv:nucl-ex/0410013

    ADS  Article  Google Scholar 

  21. 21

    F.E. Maas et al., Phys. Rev. Lett. 94, 152001 (2005) arXiv:nucl-ex/0412030

    ADS  Article  Google Scholar 

  22. 22

    T. Hammel et al., Nucl. Instrum. Methods A 564, 1 (2006) arXiv:nucl-ex/0504017

    ADS  Article  Google Scholar 

  23. 23

    I. Altarev et al., Nucl. Instrum. Methods A 564, 13 (2006) arXiv:nucl-ex/0504024

    ADS  Article  Google Scholar 

  24. 24

    S. Baunack et al., Phys. Rev. Lett. 102, 151803 (2009) arXiv:0903.2733 [nucl-ex]

    ADS  Article  Google Scholar 

  25. 25

    D. Balaguer Ríos et al., Phys. Rev. D 94, 051101 (2016)

    ADS  Article  Google Scholar 

  26. 26

    D. Balaguer Ríos et al., Phys. Rev. Lett. 119, 012501 (2017)

    ADS  Article  Google Scholar 

  27. 27

    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Rev. Lett. 82, 1096 (1999) arXiv:nucl-ex/9810012

    Article  Google Scholar 

  28. 28

    HAPPEX Collaboration (N. Falletto et al.), Nucl. Instrum. Methods A 459, 412 (2001)

    Article  Google Scholar 

  29. 29

    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Lett. B 509, 211 (2001) arXiv:nucl-ex/0006002

    ADS  Article  Google Scholar 

  30. 30

    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Rev. C 69, 065501 (2004) arXiv:nucl-ex/0402004

    Article  Google Scholar 

  31. 31

    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Rev. Lett. 96, 022003 (2006) arXiv:nucl-ex/0506010

    Article  Google Scholar 

  32. 32

    HAPPEX Collaboration (K.A. Aniol et al.), Phys. Lett. B 635, 275 (2006) arXiv:nucl-ex/0506011

    ADS  Article  Google Scholar 

  33. 33

    HAPPEX Collaboration (A. Acha et al.), Phys. Rev. Lett. 98, 032301 (2007) arXiv:nucl-ex/0609002

    Article  Google Scholar 

  34. 34

    HAPPEX Collaboration (Z. Ahmed et al.), Phys. Rev. Lett. 108, 102001 (2012) arXiv:1107.0913 [nucl-ex]

    Article  Google Scholar 

  35. 35

    G0 Collaboration (D.S. Armstrong et al.), Phys. Rev. Lett. 95, 092001 (2005) arXiv:nucl-ex/0506021

    Article  Google Scholar 

  36. 36

    G0 Collaboration (David S. Armstrong et al.), Phys. Rev. Lett. 99, 092301 (2007) arXiv:0705.1525 [nucl-ex]

    Article  Google Scholar 

  37. 37

    G0 Collaboration (D. Androic et al.), Phys. Rev. Lett. 104, 012001 (2010) arXiv:0909.5107 [nucl-ex]

    ADS  Article  Google Scholar 

  38. 38

    G0 Collaboration (D. Androic et al.), Nucl. Instrum. Methods A 646, 59 (2011) arXiv:1103.0761 [nucl-ex]

    Article  Google Scholar 

  39. 39

    G0 Collaboration (D. Androic et al.), Phys. Rev. Lett. 107, 022501 (2011) arXiv:1103.3667 [nucl-ex]

    Article  Google Scholar 

  40. 40

    G0 Collaboration (D. Androic et al.), Phys. Rev. Lett. 108, 122002 (2012) arXiv:1112.1720 [nucl-ex]

    Article  Google Scholar 

  41. 41

    M.J. Musolf, T.W. Donnelly, J. Dubach, S.J. Pollock, S. Kowalski, E.J. Beise, Phys. Rep. 239, 1 (1994) arXiv:nucl-th/9307022

    ADS  Article  Google Scholar 

  42. 42

    K.S. Kumar, P.A. Souder, Prog. Part. Nucl. Phys. 45, S333 (2000)

    ADS  Article  Google Scholar 

  43. 43

    V.E. Lyubovitskij, P. Wang, T. Gutsche, Amand Faessler, Phys. Rev. C 66, 055204 (2002) arXiv:hep-ph/0207225

    ADS  Article  Google Scholar 

  44. 44

    K.S. Kumar, S. Mantry, W.J. Marciano, P.A. Souder, Annu. Rev. Nucl. Part. Sci. 63, 237 (2013) arXiv:1302.6263 [hep-ex]

    ADS  Article  Google Scholar 

  45. 45

    F.E. Maas, K.D. Paschke, Prog. Part. Nucl. Phys. 95, 209 (2017)

    ADS  Article  Google Scholar 

  46. 46

    S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012) arXiv:1201.2568 [nucl-ex]

    ADS  Article  Google Scholar 

  47. 47

    HAPPEX, PREX Collaborations (S. Abrahamyan et al.), Phys. Rev. Lett. 109, 192501 (2012) arXiv:1208.6164 [nucl-ex]

    Article  Google Scholar 

  48. 48

    SLAC E158 Collaboration (P.L. Anthony et al.), Phys. Rev. Lett. 92, 181602 (2004) arXiv:hep-ex/0312035

    Article  Google Scholar 

  49. 49

    SLAC E158 Collaboration (P.L. Anthony et al.), Phys. Rev. Lett. 95, 081601 (2005) arXiv:hep-ex/0504049

    Article  Google Scholar 

  50. 50

    PVDIS Collaboration (D. Wang et al.), Nature 506, 67 (2014)

    ADS  Article  Google Scholar 

  51. 51

    MOLLER Collaboration (J. Benesch), The MOLLER Experiment: An Ultra-Precise Measurement of the Weak Mixing Angle Using Møller Scattering, arXiv:1411.4088 [nucl-ex] (2014)

  52. 52

    SoLID Collaboration (J.P. Chen, H. Gao, T.K. Hemmick, Z.-E. Meziani, P.A. Souder), A White Paper on SoLID (Solenoidal Large Intensity Device), arXiv:1409.7741 [nucl-ex] (2014)

  53. 53

    R. Milner, R. Carlini, F. Maas, AIP Conf. Proc. 1563, 1 (2013)

    ADS  Google Scholar 

  54. 54

    M.J. Ramsey-Musolf, Phys. Rev. C 60, 015501 (1999) arXiv:hep-ph/9903264

    ADS  Article  Google Scholar 

  55. 55

    J. Erler, A. Kurylov, M.J. Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003) arXiv:hep-ph/0302149

    ADS  Article  Google Scholar 

  56. 56

    J. Erler, M.J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 54, 351 (2005) arXiv:hep-ph/0404291

    ADS  Article  Google Scholar 

  57. 57

    J. Erler, S.-F. Su, Prog. Part. Nucl. Phys. 71, 119 (2013) arXiv:1303.5522 [hep-ph]

    ADS  Article  Google Scholar 

  58. 58

    R. Carlini, The Qweak Experiment at JLab, Conference Talk, PANIC2017, Beijing, Sept. 1–5 (2017)

  59. 59

    H. Davoudiasl, H.-S. Lee, W.J. Marciano, Phys. Rev. D 85, 115019 (2012) arXiv:1203.2947 [hep-ph]

    ADS  Article  Google Scholar 

  60. 60

    H. Davoudiasl, H.-S. Lee, W.J. Marciano, Phys. Rev. D 89, 095006 (2014) arXiv:1402.3620 [hep-ph]

    ADS  Article  Google Scholar 

  61. 61

    J. Alexander, Dark Sectors 2016 Workshop: Community Report, 2016

  62. 62

    M.J. Ramsey-Musolf, S. Su, Phys. Rep. 456, 1 (2008) arXiv:hep-ph/0612057

    ADS  Article  Google Scholar 

  63. 63

    J. Erler, C.J. Horowitz, S. Mantry, P.A. Souder, Annu. Rev. Nucl. Part. Sci. 64, 269 (2014) arXiv:1401.6199 [hep-ph]

    ADS  Article  Google Scholar 

  64. 64

    M.N. Rosenbluth, Phys. Rev. 79, 615 (1950)

    ADS  Article  Google Scholar 

  65. 65

    M. Gorchtein, H. Spiesberger, X.L. Zhang, Phys. Lett. B 752, 135 (2016) arXiv:1509.08780 [nucl-th]

    ADS  Article  Google Scholar 

  66. 66

    J.C. Bernauer, Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the $Q^{2}$ range from 0.004 to 1 $(\ab{GeV/c})^{2}$, PhD Thesis, JGU Mainz (2010)

  67. 67

    M.A. El Yakoubi, Contribution du quark etrange a la structure electromagnetique du nucleon: Les resultats de l’éxperience PVA4 a $Q^{2} = 0.23$$(\ab{GeV/c})^{2}$, PhD Thesis, Université Paris Sud - Paris XI (2007)

  68. 68

    S. Galster, H. Klein, J. Moritz, K.H. Schmidt, D. Wegener, J. Bleckwenn, Nucl. Phys. B 32, 221 (1971)

    ADS  Article  Google Scholar 

  69. 69

    P. Wang, D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. C 79, 065202 (2009) arXiv:0807.0944 [hep-ph]

    ADS  Article  Google Scholar 

  70. 70

    P. Larin, Voruntersuchungen für ein Präzisionsexperiment zur Messung der schwachen Ladung des Protons, Bachelor Thesis, JGU Mainz (2011)

  71. 71

    B. Kubis, R. Lewis, Phys. Rev. C 74, 015204 (2006) arXiv:nucl-th/0605006

    ADS  Article  Google Scholar 

  72. 72

    QWeak Collaboration (D. Androic et al.), Phys. Rev. Lett. 111, 141803 (2013) arXiv:1307.5275 [nucl-ex]

    Article  Google Scholar 

  73. 73

    V. Tioukine, K. Aulenbacher, Nucl. Instrum. Methods A 568, 537 (2006)

    ADS  Article  Google Scholar 

  74. 74

    J. Grames, Two Wien filter spin flipper, in Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA (IEEE, 2011) pp. 862--865

  75. 75

    S. Friederich, K. Aulenbacher, Test electron source for increased brightness emission by near band gap photoemission, in Proceedings of IPAC2015, Richmond, VA, USA (JACOW, 2015) pp. 1512--1514

  76. 76

    K. Aulenbacher et al., Nucl. Instrum. Methods A 391, 498 (1997)

    ADS  Article  Google Scholar 

  77. 77

    K. Aulenbacher, Eur. Phys. J. ST 198, 361 (2011)

    Article  Google Scholar 

  78. 78

    K. Aulenbacher, Erzeugung intensiver hochpolarisierter Elektronenstrahlen mit hoher Symmetrie unter Helizitätswechsel (Shaker Verlag Aachen, 2006)

  79. 79

    K. Aulenbacher, I. Alexander, E. Riehn, V. Tioukine, J. Phys. Conf. Ser. 298, 012019 (2011)

    Article  Google Scholar 

  80. 80

    K. Aulenbacher, I. Alexander, V. Tioukine, Nuovo Cimento C 035, 186 (2012)

    Google Scholar 

  81. 81

    A. Gellrich, K. Jost, J. Kessler, Rev. Sci. Instrum. 61, 3399 (1990)

    ADS  Article  Google Scholar 

  82. 82

    A. Gellrich, J. Kessler, Phys. Rev. A 43, 204 (1991)

    ADS  Article  Google Scholar 

  83. 83

    S. Mayer, T. Fischer, W. Blaschke, J. Kessler, Rev. Sci. Instrum. 64, 952 (1993)

    ADS  Article  Google Scholar 

  84. 84

    M. Steigerwald, Polarisationsanalyse des Elektronenstrahls der MAMI-Quelle polarisierter Elektronen mittels Mott-Streuung, Diploma Thesis, JGU Mainz (1994)

  85. 85

    M. Molitor, Präzisionsmessung der Strahlpolarisation für das P2 Experiment an MESA mittels Doppel-Mott-Streuung, Phd Thesis (in preparation), JGU Mainz (2018)

  86. 86

    H. Hopster, D.L. Abraham, Rev. Sci. Instrum. 59, 49 (1988)

    ADS  Article  Google Scholar 

  87. 87

    V. Tioukine, K. Aulenbacher, E. Riehn, Rev. Sci. Instrum. 82, 033303 (2011)

    ADS  Article  Google Scholar 

  88. 88

    M.A. Khakoo, D. Roundy, C. Hicks, N. Margolis, E. Yeung, A.W. Ross, T.J. Gay, Phys. Rev. A 64, 052713 (2001)

    ADS  Article  Google Scholar 

  89. 89

    K. Aulenbacher, V. Tioukine, AIP Conf. Proc. 1149, 1155 (2008)

    ADS  Google Scholar 

  90. 90

    X. Roca-Maza, Theoretical calculations for precision polarimetry based on Mott scattering, arXiv:1710.0863 (2017)

    ADS  Article  Google Scholar 

  91. 91

    M. Steigerwald, AIP Conf. Proc. 570, 935 (2001)

    ADS  Article  Google Scholar 

  92. 92

    E. Chudakov, V. Luppov, IEEE Trans. Nucl. Sci. 51, 1533 (2004)

    ADS  Article  Google Scholar 

  93. 93

    M. Mertig et al., Rev. Sci. Instrum. 62, 251 (1991)

    ADS  Article  Google Scholar 

  94. 94

    M. Hauger et al., Nucl. Instrum. Methods A 462, 382 (1994)

    ADS  Article  Google Scholar 

  95. 95

    L.G. Levchuk, Nucl. Instrum. Methods A 345, 496 (1994)

    ADS  Article  Google Scholar 

  96. 96

    S. Baunack, Einzelspin-Asymmetrien in der elastischen Elektron-Proton-Streuung und die Beiträge der Strange-Quarks zu den Formfaktoren des Nukleons, PhD Thesis, JGU Mainz (2006)

  97. 97

    S.D. Covrig et al., Nucl. Instrum. Methods A 551, 218 (2005) arXiv:nucl-ex/0502019

    ADS  Article  Google Scholar 

  98. 98

    S.D. Covrig, Cryotargets for PVES Experiments, invited talk, Physics beyond SM Workshop, ECT-Trento (2016)

  99. 99

    GEANT4 Collaboration (S. Agostinelli et al.), Nucl. Instrum. Methods A 506, 250 (2003)

    ADS  Article  Google Scholar 

  100. 100

    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    ADS  Article  Google Scholar 

  101. 101

    J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)

    ADS  Article  Google Scholar 

  102. 102

    C.M. Poole, I. Cornelius, J.V. Trapp, C.M. Langton, Australas. Phys. Eng. Sci. Med 35, 329 (2012)

    Article  Google Scholar 

  103. 103

    FOPI Collaboration (J. Ritman), Nucl. Phys. Proc. Suppl. 44, 708 (1995)

    ADS  Article  Google Scholar 

  104. 104

    PANDA Cherenkov Collaboration (M. Hoek), Nucl. Instrum. Methods A 639, 227 (2011)

    ADS  Article  Google Scholar 

  105. 105

    M. Hoek et al., Nucl. Instrum. Methods A 595, 190 (2008)

    ADS  Article  Google Scholar 

  106. 106

    QWeak Collaboration (T. Allison et al.), Nucl. Instrum. Methods A 781, 105 (2015) arXiv:1409.7100 [physics.ins-det]

    Article  Google Scholar 

  107. 107

    I. Peric, Nucl. Instrum. Methods A 582, 876 (2007)

    ADS  Article  Google Scholar 

  108. 108

    I. Peric, C. Takacs, Nucl. Instrum. Methods A 624, 504 (2010)

    ADS  Article  Google Scholar 

  109. 109

    I. Peric, C. Kreidl, P. Fischer, Nucl. Instrum. Methods A 650, 158 (2010)

    ADS  Article  Google Scholar 

  110. 110

    I. Peric, JINST 7, C08002 (2012)

    Article  Google Scholar 

  111. 111

    I. Peric et al., Nucl. Instrum. Methods A 731, 131 (2013)

    ADS  Article  Google Scholar 

  112. 112

    A. Blondel, Research Proposal for an Experiment to Search for the Decay $\mu \rightarrow eee$, arXiv:1301.6113 [physics.ins-det] (2013)

  113. 113

    S. Shrestha, PoS TIPP2014, 047 (2014)

    Google Scholar 

  114. 114

    H. Augustin et al., JINST 10, C03044 (2015)

    Article  Google Scholar 

  115. 115

    H. Augustin et al., Nucl. Instrum. Methods A 845, 194 (2017) arXiv:1603.08751 [physics.ins-det]

    ADS  Article  Google Scholar 

  116. 116

    H. Augustin, Irradiation study of a fully monolithic HV-CMOS pixel sensor design in AMS 180nm, arXiv:1712.03921 [physics.ins-det] (2017)

  117. 117

    M. Müller, Effizienz eines HV-MAP Sensors auf niederenergetische Photonen, Bachelor Thesis, JGU Mainz (2017)

  118. 118

    N. Berger, S. Dittmeier, L. Henkelmann, A. Herkert, F. Meier Aeschbacher, Y.W. Ng, L.O.S. Noehte, A. Schöning, D. Wiedner, JINST 11, C12006 (2016) arXiv:1610.02021 [physics.ins-det]

    Article  Google Scholar 

  119. 119

    M. Oinonen, ALICE Silicon Strip Detector module assembly with single-point TAB interconnections, in Proceedings, eleventh Workshop on Electronics for LHC and Future Experiments, Heidelberg, Germany, 12–16 September 2005 (CERN, 2005) p. 15

  120. 120

    L. Feld, M. Fleck, M. Friedrichs, R. Hensch, W. Karpinski, K. Klein, D. Rittich, J. Sammet, M. Wlochal, Nucl. Instrum. Methods A 732, 493 (2013)

    ADS  Article  Google Scholar 

  121. 121

    R. Schwemmer, J.P. Cachemiche, N. Neufeld, C. Soos, J. Troska, K. Wyllie, JINST 9, C03030 (2014)

    Article  Google Scholar 

  122. 122

    R. Martin Lesma, F. Alessio, J. Barbosa, S. Baron, C. Caplan, P. Leitao, C. Pecoraro, D. Porret, K. Wyllie, JINST 12, C02020 (2017)

    Article  Google Scholar 

  123. 123

    C. Soós, S. Détraz, L. Olanterä, C. Sigaud, J. Troska, F. Vasey, M. Zeiler, JINST 12, C03068 (2017)

    Article  Google Scholar 

  124. 124

    I. Sorokin, EPJ Web of Conferences 150, 00012 (2017)

    Article  Google Scholar 

  125. 125

    V. Blobel, C. Kleinwort, F. Meier, Comput. Phys. Commun. 182, 1760 (2011) arXiv:1103.3909 [physics.ins-det]

    ADS  Article  Google Scholar 

  126. 126

    C. Kleinwort, Nucl. Instrum. Methods A 673, 107 (2012) arXiv:1201.4320 [physics.ins-det]

    ADS  Article  Google Scholar 

  127. 127

    N. Berger, A. Buniatyan, P. Eckert, F. Förster, R. Gredig, O. Kovalenko, M. Kiehn, R. Philipp, A. Schöning, D. Wiedner, JINST 9, P07007 (2014) arXiv:1405.2759 [physics.ins-det]

    ADS  Article  Google Scholar 

  128. 128

    M. Gorchtein, C.J. Horowitz, M.J. Ramsey-Musolf, Phys. Rev. C 84, 015502 (2011) arXiv:1102.3910 [nucl-th]

    ADS  Article  Google Scholar 

  129. 129

    J. Erler, M.J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005) arXiv:hep-ph/0409169

    ADS  Article  Google Scholar 

  130. 130

    J. Erler, R. Ferro-Hernández, Weak Mixing Angle in the Thomson Limit, arXiv:1712.09146 [hep-ph] (2017)

  131. 131

    A. Czarnecki, W.J. Marciano, Int. J. Mod. Phys. A 15, 2365 (2000) arXiv:hep-ph/0003049

    ADS  Google Scholar 

  132. 132

    W.J. Marciano, A. Sirlin, Phys. Rev. D 27, 552 (1983)

    ADS  Article  Google Scholar 

  133. 133

    W.J. Marciano, A. Sirlin, Phys. Rev. D 29, 75 (1984) 31

    ADS  Article  Google Scholar 

  134. 134

    M.J. Musolf, B.R. Holstein, Phys. Lett. B 242, 461 (1990)

    ADS  Article  Google Scholar 

  135. 135

    M. Gorchtein, C.J. Horowitz, Phys. Rev. Lett. 102, 091806 (2009) arXiv:0811.0614 [hep-ph]

    ADS  Article  Google Scholar 

  136. 136

    A. Sibirtsev, P.G. Blunden, W. Melnitchouk, A.W. Thomas, Phys. Rev. D 82, 013011 (2010) arXiv:1002.0740 [hep-ph]

    ADS  Article  Google Scholar 

  137. 137

    B.C. Rislow, C.E. Carlson, Phys. Rev. D 83, 113007 (2011) arXiv:1011.2397 [hep-ph]

    ADS  Article  Google Scholar 

  138. 138

    P.G. Blunden, W. Melnitchouk, A.W. Thomas, Phys. Rev. Lett. 107, 081801 (2011) arXiv:1102.5334 [hep-ph]

    ADS  Article  Google Scholar 

  139. 139

    N.L. Hall, P.G. Blunden, W. Melnitchouk, A.W. Thomas, R.D. Young, Phys. Lett. B 753, 221 (2016) arXiv:1504.03973 [nucl-th]

    ADS  Article  Google Scholar 

  140. 140

    H.Q. Zhou, C.W. Kao, S.N. Yang, K. Nagata, Phys. Rev. C 81, 035208 (2010) arXiv:0910.3307 [nucl-th]

    ADS  Article  Google Scholar 

  141. 141

    M. Gorchtein, H. Spiesberger, Phys. Rev. C 94, 055502 (2016) arXiv:1608.07484 [nucl-th]

    ADS  Article  Google Scholar 

  142. 142

    M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    ADS  Article  Google Scholar 

  143. 143

    M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)

    ADS  Article  Google Scholar 

  144. 144

    C.P. Burgess, S. Godfrey, H. Konig, D. London, I. Maksymyk, Phys. Lett. B 326, 276 (1994) arXiv:hep-ph/9307337

    ADS  Article  Google Scholar 

  145. 145

    X. Roca-Maza, M. Centelles, X. Vinas, M. Warda, Phys. Rev. Lett. 106, 252501 (2011) arXiv:1103.1762 [nucl-th]

    ADS  Article  Google Scholar 

  146. 146

    Virgo, LIGO Scientific Collaborations (B.P. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017) arXiv:1710.05832 [gr-qc]

    ADS  Article  Google Scholar 

  147. 147

    A. Carbone, G. Colo, A. Bracco, L.-G. Cao, P.F. Bortignon, F. Camera, O. Wieland, Phys. Rev. C 81, 041301 (2010) arXiv:1003.3580 [nucl-th]

    ADS  Article  Google Scholar 

  148. 148

    A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011) arXiv:1104.5431 [nucl-ex]

    ADS  Article  Google Scholar 

  149. 149

    C.M. Tarbert et al., Phys. Rev. Lett. 112, 242502 (2014) arXiv:1311.0168 [nucl-ex]

    ADS  Article  Google Scholar 

  150. 150

    J. Zenihiro et al., Phys. Rev. C 82, 044611 (2010)

    ADS  Article  Google Scholar 

  151. 151

    B. Klos et al., Phys. Rev. C 76, 014311 (2007) arXiv:nucl-ex/0702016

    ADS  Article  Google Scholar 

  152. 152

    C. Garcia-Recio, J. Nieves, E. Oset, Nucl. Phys. A 547, 473 (1992)

    ADS  Article  Google Scholar 

  153. 153

    C.J. Horowitz, S.J. Pollock, P.A. Souder, R. Michaels, Phys. Rev. C 63, 025501 (2001) arXiv:nucl-th/9912038

    ADS  Article  Google Scholar 

  154. 154

    C.J. Horowitz, K.S. Kumar, R. Michaels, Eur. Phys. J. A 50, 48 (2014) arXiv:1307.3572 [nucl-ex]

    ADS  Article  Google Scholar 

  155. 155

    C.J. Horowitz, Z. Lin, private communication (2015)

  156. 156

    F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018) arXiv:1711.06615 [nucl-th]

    ADS  Article  Google Scholar 

  157. 157

    P.A. Souder, PREX-II: Precision parity-violating measurement of the neutron skin of lead, https://doi.org/hallaweb.jlab.org/parity/prex/prexII.pdf, proposal to Jefferson Lab PAC 38

  158. 158

    S.-L. Zhu, S. Puglia, B.R. Holstein, M.J. Ramsey-Musolf, Phys. Rev. C 64, 035502 (2001) arXiv:hep-ph/0012253

    ADS  Article  Google Scholar 

  159. 159

    J. Liu, R.D. McKeown, M.J. Ramsey-Musolf, Phys. Rev. C 76, 025202 (2007) arXiv:0706.0226 [nucl-ex]

    ADS  Article  Google Scholar 

  160. 160

    R. González-Jiménez, J.A. Caballero, T.W. Donnelly, Phys. Rev. D 90, 033002 (2014) arXiv:1403.5119 [nucl-th]

    ADS  Article  Google Scholar 

  161. 161

    O. Moreno, T.W. Donnelly, R. González-Jiménez, J.A. Caballero, J. Phys. G 42, 034006 (2015) arXiv:1408.3511 [nucl-th]

    ADS  Article  Google Scholar 

  162. 162

    S. Gardner, W.C. Haxton, B.R. Holstein, Annu. Rev. Nucl. Part. Sci. 67, 69 (2017) arXiv:1704.02617 [nucl-th]

    ADS  Article  Google Scholar 

  163. 163

    J. de Vries, U.-G. Meißner, Int. J. Mod. Phys. E 25, 1641008 (2016) arXiv:1509.07331 [hep-ph]

    ADS  Article  Google Scholar 

  164. 164

    Jiunn-Wei Chen, Xiang-Dong Ji, Phys. Lett. B 501, 209 (2001) arXiv:nucl-th/0011100

    Article  Google Scholar 

  165. 165

    Jiunn-Wei Chen, Xiang-Dong Ji, Phys. Rev. Lett. 86, 4239 (2001) arXiv:hep-ph/0011230

    ADS  Article  Google Scholar 

  166. 166

    B. Pasquini, M. Vanderhaeghen, Phys. Rev. C 70, 045206 (2004) arXiv:hep-ph/0405303

    ADS  Article  Google Scholar 

  167. 167

    Qweak Collaboration (D. Androić et al.), Nature 557, 207 (2018)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frank Maas.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becker, D., Bucoveanu, R., Grzesik, C. et al. The P2 experiment. Eur. Phys. J. A 54, 208 (2018). https://doi.org/10.1140/epja/i2018-12611-6

Download citation