Skip to main content
Log in

Excitation functions of proton-induced reactions on natFe and natZr targets for the production of cobalt and niobium isotopes

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript


Excitation functions of proton-induced reactions for the natural iron and zirconium targets were measured from their respective threshold energies to 22 and 20 MeV. The conventional stacked foil technique was used in combination with the off-line \(\gamma\)-ray spectroscopy at the BARC-TIFR Pelletron facility, Mumbai. The computer code SRIM 2013 was used to calculate the energy degradation along the stack and the proton beam intensity was measured via the natCu(p,x)62Zn monitor reaction. The measured excitation functions were then compared with the literature data available in EXFOR database as well as with the theoretical values from the TALYS-1.8 code and the TENDL-2017 data library. The shapes of the excitation function for all the reactions were reproduced well by TALYS-1.8. In terms of absolute values, for some reactions the data are in good agreement with both the literature data and TALYS-1.8 whereas, for others there is a slight deviation either from the literature data or from the theoretical values of TALYS-1.8 and TENDL-2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others



  2. Nuclear Power Plant Design Characteristics: Structure of Nuclear power plant design characteristics in the IAEA power reactor information system (PRIS) (IAEA, Vienna, 2007) IAEA-TECDOC-1544, ISBN 92--0--102507--6, ISSN 1011--4289

  3. A.V. Nikulina, Met. Sci. Heat Treat. 45, 7 (2003)

    Article  Google Scholar 

  4. V. Radchenko, H. Hauser, M. Eisenhut, D.J. Vugts, G.A.M.S. van Dongen, F. Roesch, Radiochim. Acta 100, 875 (2012)

    Article  Google Scholar 

  5. A. Murphy, J. Maisterrena, J. Labardini, J.A. Ruiz, C. Luviano, Rev. Invest. Clin. 43, 346 (1991)

    Google Scholar 



  8. O. Nieweg, D.A. Piers, H. Beekhuis, Clin. Neurol. Neurosurg. 90, 109 (1988)

    Article  Google Scholar 

  9. R.L. Auble, W.C. McHarris, W.H. Kelly, Nucl. Phys. A 91, 225 (1967)

    Article  ADS  Google Scholar 



  12. E.E. Sapir, L. Bettman, G. Iosilevsky, D. Milshtein, A. Frenkel, G.M. Kolodny, S.B. Haim, O. Israel, D. Front, J. Nucl. Med. 35, 1129 (1994)

    Google Scholar 

  13. K. Abbas, D. Gilliland, M.F. Stroosnijder, Appl. Radiat. Isot. 53, 179 (2000)

    Article  Google Scholar 

  14. R. Ghosh, S. Badwar, B. Lawriniang, B. Jyrwa, H. Naik, Y. Naik, S. Suryanarayana, S. Ganesan, Nucl. Phys. A 964, 86 (2017)

    Article  ADS  Google Scholar 

  15. K.S. Kim, M.U. Khandaker, H. Naik, G. Kim, Nucl. Instrum. Methods Phys. Res. B 322, 63 (2014)

    Article  ADS  Google Scholar 

  16. M. Al-Abyad, M.N.H. Comsan, S.M. Qaim, Appl. Radiat. Isot. 67, 122 (2009)

    Article  Google Scholar 

  17. R. Michel, R. Bodemann, H. Busemann, R. Dam, M. Gloris, H.-J. Lange, B. Klug, A. Krins, I. Leya, M. Liipke, S. Neumann, H. Reinhardt, M. Schnatz-Biittgen, U. Herpers, Th. Schiekel, F. Sudbrock, B. Holmqvist, H. Cond, P. Malmborg, M. Suter, B. Dittrich-Hannen, P.-W. Kubik, H.-A. Synal, D. Filges, Nucl. Instrum. Methods Phys. Res. B 129, 153 (1997)

    Article  ADS  Google Scholar 

  18. S. Sudar, S.M. Qaim, Phys. Rev. C 50, 2408 (1994)

    Article  ADS  Google Scholar 

  19. S. Takacs, L. Vasvary, F. Tarkanyi, Nucl. Instrum. Methods Phys. Res. B 89, 88 (1994)

    Article  ADS  Google Scholar 

  20. P. Jung, EXFOR, Conf. Proc. 91JUELIC 352 (1991)

  21. R. Michel, G. Brinkmann, J. Radioanal. Chem. 59, 467 (1980)

    Article  Google Scholar 

  22. N.C. Schoen, Phys. Rev. C 20, 88 (1979)

    Article  ADS  Google Scholar 

  23. R. Michel, G. Brinkmann, H. Weigel, W. Herr, Nucl. Phys. A 322, 40 (1979)

    Article  ADS  Google Scholar 

  24. R.L. Brodzinski, L.A. Rancitelli, J.A. Cooper, N.A. Wogman, Phys. Rev. C 4, 1257 (1971)

    Article  ADS  Google Scholar 

  25. E. Daum, Investigation of light ion induced activation cross sections in iron. Proton induced activation cross sections, Progress Report No. NEA/NSC/DOC(97)13 INDC(GER) 043, 4–8 (1997)

  26. Z. Wenrong, L. Hanlin, Y. Weixiang, Chin. J. Nucl. Phys. 15, 337 (1993)

    Google Scholar 

  27. F. Szelecsényi, G.F. Steyn, Z. Kovács, C. Vermeulen, K. Nagatsu, M.R. Zhang, K. Suzuk, Nucl. Instrum. Methods Phys. Res. B 343, 173 (2015)

    Article  ADS  Google Scholar 

  28. F. Tárkányi, F. Ditrói, S. Takács, A. Hermanne, M. Al-Abyad, H. Yamazaki, M. Baba, M.A. Mohammad, Appl. Radiat. Isot. 97, 149 (2015)

    Article  Google Scholar 

  29. M. Murakami, H. Haba, S. Goto, J. Kanaya, H. Kudo, Appl. Radiat. Isot. 90, 149 (2014)

    Article  Google Scholar 

  30. M. Al-Abyad, A.S. Abdel-Hamid, F. Tarkanyi, F. Ditroi, S. Takacs, U. Seddik, I.I. Bashter, Appl. Radiat. Isot. 70, 257 (2012)

    Article  Google Scholar 

  31. M.U. Khandaker, K. Kim, M.W. Lee, K.S. Kim, G.N. Kim, Y.S. Cho, Y.O. Lee, Appl. Radiat. Isot. 67, 1341 (2009)

    Article  Google Scholar 

  32. M.S. Uddin, M.U. Khandaker, K.S. Kim, Y.S. Lee, M.W. Lee, G.N. Kim, Nucl. Instrum. Methods Phys. Res. B 266, 13 (2008)

    Article  ADS  Google Scholar 

  33. O.N. Vysotskij, A.V. Gonchar, O.K. Gorpinich, S.N. Kondratev, V.S. Prokopenko, S.B. Rakitin, V.D. Skljarenko, V.V. Tokarevskij, EXFOR, C 91MINSK, 486 (1991)

  34. Y.V. Aleksandrov, S.K. Vasiliev, R.B. Ivanov, M.A. Mikhailova, T.I. Popova, V.P. Prikhodtseva, A.A. Astapov, A. Kolachkovsky, P. Misiak, A.F. Novgorodov, EXFOR, C 93DUBNS, 406 (1993)

  35. F. Ditrói, F. Tárkányi, J. Csikai, M.S. Uddin, M. Hagiwara, M. Baba, AIP Conf. Proc. 769, 1011 (2004)

    Article  ADS  Google Scholar 

  36. BARC--TIFR Pelletron-LINAC Facility, Silver Jubilee (1988--2013), available at

  37. I.A. Alnour, H. Wagiran, N. Ibrahim, S. Hamzah, W.B. Siong, M.S. Elias, AIP Conf. Proc. 1584, 38 (2014)

    Article  ADS  Google Scholar 

  38. A.W. Tyler, Phys. Rev. 56, 125 (1939)

    Article  ADS  Google Scholar 


  40. J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219-220, 1027 (2004)

    Article  ADS  Google Scholar 

  41. G. Gilmore, J.D. Hemingway, Practical Gamma-Ray Spectrometry (John Wiley and Sons, England, 1995) p. 17

  42. NuDat $2.7\beta$, National Nuclear Data Center, Brookhaven National Laboratory, updated 2011, available on

  43. $Q$-value,

  44. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979)

    Google Scholar 

  45. A.V. Ignatyuk, R. Capote, Nuclear Level Densities, in Handbook for Calculations of Nuclear Reaction Data, RIPL-2, IAEA-TECDOC-1506, 85 (2006)

  46. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  47. A.J. Koning, TALYS user manual, A nuclear reaction program, User manual, NRG-1755 ZG PETTEN, The Netherlands (2015)

  48. IAEA-EXFOR Data base at

  49. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Naik.

Additional information

Communicated by R.K. Bhandari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawriniang, B., Badwar, S., Ghosh, R. et al. Excitation functions of proton-induced reactions on natFe and natZr targets for the production of cobalt and niobium isotopes. Eur. Phys. J. A 54, 141 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: