Excitation functions of proton-induced reactions on natFe and natZr targets for the production of cobalt and niobium isotopes

  • B. Lawriniang
  • S. Badwar
  • R. Ghosh
  • B. Jyrwa
  • H. NaikEmail author
  • S. V. Suryanarayana
  • Y. P. Naik
Regular Article - Experimental Physics


Excitation functions of proton-induced reactions for the natural iron and zirconium targets were measured from their respective threshold energies to 22 and 20 MeV. The conventional stacked foil technique was used in combination with the off-line \(\gamma\)-ray spectroscopy at the BARC-TIFR Pelletron facility, Mumbai. The computer code SRIM 2013 was used to calculate the energy degradation along the stack and the proton beam intensity was measured via the natCu(p,x)62Zn monitor reaction. The measured excitation functions were then compared with the literature data available in EXFOR database as well as with the theoretical values from the TALYS-1.8 code and the TENDL-2017 data library. The shapes of the excitation function for all the reactions were reproduced well by TALYS-1.8. In terms of absolute values, for some reactions the data are in good agreement with both the literature data and TALYS-1.8 whereas, for others there is a slight deviation either from the literature data or from the theoretical values of TALYS-1.8 and TENDL-2017.


  1. 1.
  2. 2.
    Nuclear Power Plant Design Characteristics: Structure of Nuclear power plant design characteristics in the IAEA power reactor information system (PRIS) (IAEA, Vienna, 2007) IAEA-TECDOC-1544, ISBN 92--0--102507--6, ISSN 1011--4289Google Scholar
  3. 3.
    A.V. Nikulina, Met. Sci. Heat Treat. 45, 7 (2003)CrossRefGoogle Scholar
  4. 4.
    V. Radchenko, H. Hauser, M. Eisenhut, D.J. Vugts, G.A.M.S. van Dongen, F. Roesch, Radiochim. Acta 100, 875 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Murphy, J. Maisterrena, J. Labardini, J.A. Ruiz, C. Luviano, Rev. Invest. Clin. 43, 346 (1991)Google Scholar
  6. 6.
  7. 7.
  8. 8.
    O. Nieweg, D.A. Piers, H. Beekhuis, Clin. Neurol. Neurosurg. 90, 109 (1988)CrossRefGoogle Scholar
  9. 9.
    R.L. Auble, W.C. McHarris, W.H. Kelly, Nucl. Phys. A 91, 225 (1967)ADSCrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    E.E. Sapir, L. Bettman, G. Iosilevsky, D. Milshtein, A. Frenkel, G.M. Kolodny, S.B. Haim, O. Israel, D. Front, J. Nucl. Med. 35, 1129 (1994)Google Scholar
  13. 13.
    K. Abbas, D. Gilliland, M.F. Stroosnijder, Appl. Radiat. Isot. 53, 179 (2000)CrossRefGoogle Scholar
  14. 14.
    R. Ghosh, S. Badwar, B. Lawriniang, B. Jyrwa, H. Naik, Y. Naik, S. Suryanarayana, S. Ganesan, Nucl. Phys. A 964, 86 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    K.S. Kim, M.U. Khandaker, H. Naik, G. Kim, Nucl. Instrum. Methods Phys. Res. B 322, 63 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    M. Al-Abyad, M.N.H. Comsan, S.M. Qaim, Appl. Radiat. Isot. 67, 122 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Michel, R. Bodemann, H. Busemann, R. Dam, M. Gloris, H.-J. Lange, B. Klug, A. Krins, I. Leya, M. Liipke, S. Neumann, H. Reinhardt, M. Schnatz-Biittgen, U. Herpers, Th. Schiekel, F. Sudbrock, B. Holmqvist, H. Cond, P. Malmborg, M. Suter, B. Dittrich-Hannen, P.-W. Kubik, H.-A. Synal, D. Filges, Nucl. Instrum. Methods Phys. Res. B 129, 153 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    S. Sudar, S.M. Qaim, Phys. Rev. C 50, 2408 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    S. Takacs, L. Vasvary, F. Tarkanyi, Nucl. Instrum. Methods Phys. Res. B 89, 88 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    P. Jung, EXFOR, Conf. Proc. 91JUELIC 352 (1991)Google Scholar
  21. 21.
    R. Michel, G. Brinkmann, J. Radioanal. Chem. 59, 467 (1980)CrossRefGoogle Scholar
  22. 22.
    N.C. Schoen, Phys. Rev. C 20, 88 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    R. Michel, G. Brinkmann, H. Weigel, W. Herr, Nucl. Phys. A 322, 40 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    R.L. Brodzinski, L.A. Rancitelli, J.A. Cooper, N.A. Wogman, Phys. Rev. C 4, 1257 (1971)ADSCrossRefGoogle Scholar
  25. 25.
    E. Daum, Investigation of light ion induced activation cross sections in iron. Proton induced activation cross sections, Progress Report No. NEA/NSC/DOC(97)13 INDC(GER) 043, 4–8 (1997)Google Scholar
  26. 26.
    Z. Wenrong, L. Hanlin, Y. Weixiang, Chin. J. Nucl. Phys. 15, 337 (1993)Google Scholar
  27. 27.
    F. Szelecsényi, G.F. Steyn, Z. Kovács, C. Vermeulen, K. Nagatsu, M.R. Zhang, K. Suzuk, Nucl. Instrum. Methods Phys. Res. B 343, 173 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    F. Tárkányi, F. Ditrói, S. Takács, A. Hermanne, M. Al-Abyad, H. Yamazaki, M. Baba, M.A. Mohammad, Appl. Radiat. Isot. 97, 149 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Murakami, H. Haba, S. Goto, J. Kanaya, H. Kudo, Appl. Radiat. Isot. 90, 149 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Al-Abyad, A.S. Abdel-Hamid, F. Tarkanyi, F. Ditroi, S. Takacs, U. Seddik, I.I. Bashter, Appl. Radiat. Isot. 70, 257 (2012)CrossRefGoogle Scholar
  31. 31.
    M.U. Khandaker, K. Kim, M.W. Lee, K.S. Kim, G.N. Kim, Y.S. Cho, Y.O. Lee, Appl. Radiat. Isot. 67, 1341 (2009)CrossRefGoogle Scholar
  32. 32.
    M.S. Uddin, M.U. Khandaker, K.S. Kim, Y.S. Lee, M.W. Lee, G.N. Kim, Nucl. Instrum. Methods Phys. Res. B 266, 13 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    O.N. Vysotskij, A.V. Gonchar, O.K. Gorpinich, S.N. Kondratev, V.S. Prokopenko, S.B. Rakitin, V.D. Skljarenko, V.V. Tokarevskij, EXFOR, C 91MINSK, 486 (1991)Google Scholar
  34. 34.
    Y.V. Aleksandrov, S.K. Vasiliev, R.B. Ivanov, M.A. Mikhailova, T.I. Popova, V.P. Prikhodtseva, A.A. Astapov, A. Kolachkovsky, P. Misiak, A.F. Novgorodov, EXFOR, C 93DUBNS, 406 (1993)Google Scholar
  35. 35.
    F. Ditrói, F. Tárkányi, J. Csikai, M.S. Uddin, M. Hagiwara, M. Baba, AIP Conf. Proc. 769, 1011 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    BARC--TIFR Pelletron-LINAC Facility, Silver Jubilee (1988--2013), available at
  37. 37.
    I.A. Alnour, H. Wagiran, N. Ibrahim, S. Hamzah, W.B. Siong, M.S. Elias, AIP Conf. Proc. 1584, 38 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    A.W. Tyler, Phys. Rev. 56, 125 (1939)ADSCrossRefGoogle Scholar
  39. 39.
  40. 40.
    J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219-220, 1027 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    G. Gilmore, J.D. Hemingway, Practical Gamma-Ray Spectrometry (John Wiley and Sons, England, 1995) p. 17Google Scholar
  42. 42.
    NuDat $2.7\beta$, National Nuclear Data Center, Brookhaven National Laboratory, updated 2011, available on
  43. 43.
  44. 44.
    A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979)Google Scholar
  45. 45.
    A.V. Ignatyuk, R. Capote, Nuclear Level Densities, in Handbook for Calculations of Nuclear Reaction Data, RIPL-2, IAEA-TECDOC-1506, 85 (2006)Google Scholar
  46. 46.
    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    A.J. Koning, TALYS user manual, A nuclear reaction program, User manual, NRG-1755 ZG PETTEN, The Netherlands (2015)Google Scholar
  48. 48.
  49. 49.
    A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. Lawriniang
    • 1
  • S. Badwar
    • 1
  • R. Ghosh
    • 1
  • B. Jyrwa
    • 1
  • H. Naik
    • 2
    Email author
  • S. V. Suryanarayana
    • 3
  • Y. P. Naik
    • 4
  1. 1.Physics DepartmentNorth Eastern Hill UniversityMeghalayaIndia
  2. 2.Radiochemistry DivisionBhabha Atomic Research CenterMumbaiIndia
  3. 3.Nuclear Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  4. 4.Product Development DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations