On suprathermal corrections to reaction rates in astrophysical plasmas

Abstract.

Reaction rates in astrophysical plasma can be affected by suprathermal particles naturally produced in the matter. The influence of this phenomenon on the relation between forward and reverse processes in extremely different astrophysical environments --the primordial and solar core plasmas-- is discussed. The suprathermal components of \( d + d \rightleftarrows n + {}^3\mathrm{He}\) , \( d + d \rightleftarrows p + t\) , \( n + {}^3\mathrm{He} \rightleftarrows p + t\) , \( n + {}^7\mathrm{Be} \rightleftarrows p + {}^7\mathrm{Li}\) , \( p + {}^7\mathrm{Li} \rightleftarrows \alpha + \alpha\) , \( n + {}^7\mathrm{Be} \rightleftarrows \alpha + \alpha\) , \( \alpha + {}^6\mathrm{He} \rightleftarrows n + {}^9\mathrm{Be}\) , and \( p + {}^{18}\mathrm{F} \rightleftarrows \alpha + {}^{15}\mathrm{O}\) reactions induced by MeV neutrons, protons, and \( \alpha\) -particles are calculated and their role is clarified. In the primordial plasma, the reverse rates are partly determined by the suprathermal reactions capable of maintaining the processes as the Universe cools. It the solar core plasma, the reverse process \( \alpha + {}^{15}\mathrm{O} \rightarrow p + {}^{18}\mathrm{F}\) is fully controlled by the suprathermal component, and its rate can become equal to the rate of the forward reaction in the outer core, that nullifies the straightforward nuclear flow between the CNO-I and CNO-III branches. This result together with previous findings on the suprathermal impact on running of the CNO-II branch may serve as an argument to incorporate suprathermal processes in nucleosynthesis calculations for stars fueled by the CNO cycle.

This is a preview of subscription content, log in to check access.

References

  1. 1

    D.D. Clayton, E. Dwek, M.J. Newman, R.J. Talbot Jr., Astrophys. J. 199, 494 (1975)

    ADS  Article  Google Scholar 

  2. 2

    M. Coraddu, G. Kaniadakis, A. Lavagno, M. Lissia, G. Mezzorani, P. Quarati, Braz. J. Phys. 29, 153 (1999)

    ADS  Article  Google Scholar 

  3. 3

    Y. Nakao, K. Tsukida, V.T. Voronchev, Phys. Rev. D 84, 063016 (2011)

    ADS  Article  Google Scholar 

  4. 4

    N.J. Fisch, M.G. Gladush, Y.V. Petrushevich, P. Quarati, A.N. Starostin, Eur. Phys. J. D 66, 154 (2012)

    ADS  Article  Google Scholar 

  5. 5

    S.Q. Hou, J.J. He, A. Parikh, D. Kahl, C. Bertulani, arXiv:1408.4422v1 (2014)

  6. 6

    W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Ann. Rev. Astron. Astrophys. 5, 525 (1967)

    ADS  Article  Google Scholar 

  7. 7

    V.T. Voronchev, Y. Nakao, M. Nakamura, J. Phys. G 38, 015201 (2011)

    ADS  Article  Google Scholar 

  8. 8

    V.T. Voronchev, Y. Nakao, K. Tsukida, M. Nakamura, Phys. Rev. D 85, 067301 (2012)

    ADS  Article  Google Scholar 

  9. 9

    V.T. Voronchev, Phys. Rev. C 91, 028801 (2015)

    ADS  Article  Google Scholar 

  10. 10

    V.T. Voronchev, Y. Nakao, Y. Watanabe, Phys. Rev. C 96, 055803 (2017)

    ADS  Article  Google Scholar 

  11. 11

    V.T. Voronchev, Y. Nakao, Y. Watanabe, J. Phys. G 44, 045202 (2017)

    ADS  Article  Google Scholar 

  12. 12

    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952)

  13. 13

    C. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    ADS  Article  Google Scholar 

  14. 14

    M.S. Smith, L.H. Kawano, R.A. Malaney, Astrophys. J. Suppl. 85, 219 (1993)

    ADS  Article  Google Scholar 

  15. 15

    A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour, C. Angulo, Astrophys. J. 600, 544 (2004)

    ADS  Article  Google Scholar 

  16. 16

    M. Pospelov, J. Pradler, Phys. Rev. Lett. 106, 121305 (2011)

    ADS  Article  Google Scholar 

  17. 17

    V.T. Voronchev, Y. Nakao, M. Nakamura, Astrophys. J. 725, 242 (2010)

    ADS  Article  Google Scholar 

  18. 18

    L. Kawano, Report No. FERMILAB-PUB-92/04-A (1992)

  19. 19

    Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, H. Utsunomiya, Nucl. Phys. A 918, 61 (2013)

    ADS  Article  Google Scholar 

  20. 20

    P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, E. Vangioni-Flam, At. Data Nucl. Data Tables 88, 203 (2004)

    ADS  Article  Google Scholar 

  21. 21

    S. Ando, R.H. Cyburt, S.W. Hong, C.H. Hyun, Phys. Rev. C 74, 025809 (2006)

    ADS  Article  Google Scholar 

  22. 22

    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    ADS  Article  Google Scholar 

  23. 23

    E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011)

    ADS  Article  Google Scholar 

  24. 24

    ENDF/B-VII.1 Library 2011 National Nuclear Data Center, Brookhaven National Laboratory, http://www.nndc.bnl.gov/sigma/

  25. 25

    B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, F. Timmes, Astrophys. J. Suppl. Ser. 192, 3 (2011)

    ADS  Article  Google Scholar 

  26. 26

    E.E. Salpeter, Aust. J. Phys. 7, 373 (1954)

    ADS  Article  Google Scholar 

  27. 27

    A.V. Gruzinov, J.N. Bahcall, Astrophys. J. 504, 996 (1998)

    ADS  Article  Google Scholar 

  28. 28

    C.R. Brune, J.A. Caggiano, D.B. Sayre, A.D. Bacher, G.M. Hale, M.W. Paris, Phys. Rev. C 92, 014003 (2015)

    ADS  Article  Google Scholar 

  29. 29

    E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    ADS  Article  Google Scholar 

  30. 30

    E.G. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998)

    ADS  Article  Google Scholar 

  31. 31

    C. Iliadis, R. Longland, A.E. Champagne, A. Coc, R. Fitzgerald, Nucl. Phys. A 841, 31 (2010)

    ADS  Article  Google Scholar 

  32. 32

    A.J. Koning, D. Rochman, S.C. van der Marck, J. Kopecky, J.Ch. Sublet, S. Pomp, H. Sjostrand, R. Forrest, E. Bauge, H. Henriksson, TENDL-2012: TALYS-based evaluated nuclear data library, ftp://ftp.nrg.eu/ pub/www/talys/tendl2012/tendl2012.html

  33. 33

    C.E. Beer et al., Phys. Rev. C 83, 042801(R) (2011)

    ADS  Article  Google Scholar 

  34. 34

    D.V. Sivukhin, Rev. Plasma Phys. 4, 93 (1966)

    ADS  Google Scholar 

  35. 35

    G. Kamelander, Atomkernenerg. Kerntech. 48, 231 (1986)

    Google Scholar 

  36. 36

    Y. Nakao, N. Senmyo, N. Nakamura, H. Matsuura, T. Johzaki, V.T. Voronchev, Fusion Sci. Technol. 56, 391 (2009)

    Article  Google Scholar 

  37. 37

    H. Brysk, Plasma Phys. 16, 927 (1974)

    ADS  Article  Google Scholar 

  38. 38

    H. Brysk, P.M. Campbell, P. Hammerling, Plasma Phys. 17, 473 (1975)

    ADS  Article  Google Scholar 

  39. 39

    J.J. Devaney, M.L. Stein, Nucl. Sci. Eng. 46, 323 (1971)

    Article  Google Scholar 

  40. 40

    Y. Nakao, M. Ohta, H. Nakashima, Nucl. Fusion 21, 973 (1981)

    Article  Google Scholar 

  41. 41

    M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 71, 083502 (2005)

    ADS  Article  Google Scholar 

  42. 42

    V.T. Voronchev, N. Nakamura, Y. Nakao, J. Cosmol. Astropart. Phys. 05, 001 (2009)

    ADS  Article  Google Scholar 

  43. 43

    R.J. Gould, Astrophys. J. 417, 12 (1993)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. T. Voronchev.

Additional information

Communicated by P. Capel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voronchev, V.T. On suprathermal corrections to reaction rates in astrophysical plasmas. Eur. Phys. J. A 54, 119 (2018). https://doi.org/10.1140/epja/i2018-12551-1

Download citation