Skip to main content
Log in

On hadron deformation: A model independent extraction of EMR from pion photoproduction data

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The multipole content of pion photoproduction at the \(\Delta^{+}\)(1232) resonance has been extracted from a data set dominated by recent Mainz Microtron (MAMI) precision measurements. The analysis has been carried out in the Athens Model Independent Analysis Scheme (AMIAS), thus eliminating any model bias. The benchmark quantity for nucleon deformation, EMR = E2/M1 = E1+3/2/M1+3/2, was determined to be -2.5±0.4stat+syst, thus reconfirming in a model independent way that the conjecture of baryon deformation is valid. The derived multipole amplitudes provide stringent constraints on QCD simulations and QCD inspired models striving to describe the hadronic structure. They are in good agreement with phenomenological models which explicitly incorporate pionic degrees of freedom and with lattice QCD calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.L. Glashow, Physica A 96, 27 (1979)

    Article  ADS  Google Scholar 

  2. C.N. Papanicolas, A.M. Bernstein (Editors), Shapes of hadrons (AIP, 2007)

  3. C. Alexandrou, C.N. Papanicolas, M. Vanderhaeghen, Rev. Mod. Phys. 84, 1231 (2012)

    Article  ADS  Google Scholar 

  4. R. Beck, H.P. Krahn, J. Ahrens et al., Phys. Rev. Lett. 78, 606 (1997)

    Article  ADS  Google Scholar 

  5. G. Blanpied, M. Blecher, A. Caracappa et al., Phys. Rev. Lett. 79, 4337 (1997)

    Article  ADS  Google Scholar 

  6. V.V. Frolov, G. Adams, A. Ahmidouch et al., Phys. Rev. Lett. 82, 45 (1999)

    Article  ADS  Google Scholar 

  7. R. Beck, H. Krahn, J. Ahrens et al., Phys. Rev. C 61, 035204 (2000)

    Article  ADS  Google Scholar 

  8. G. Blanpied, M. Blecher, A. Caracappa et al., Phys. Rev. C 64, 025203 (2001)

    Article  ADS  Google Scholar 

  9. C. Mertz, C.E. Vellidis, R. Alarcon et al., Phys. Rev. Lett. 86, 2963 (2001)

    Article  ADS  Google Scholar 

  10. P. Bartsch, D. Baumann, J. Bermuth et al., Phys. Rev. Lett. 88, 142001 (2002)

    Article  ADS  Google Scholar 

  11. The CLAS Collaboration (K. Joo, L.C. Smith, V.D. Burkert et al.), Phys. Rev. Lett. 88, 122001 (2002)

    Article  Google Scholar 

  12. J. Ahrens, S. Altieri, J. Annand et al., Eur. Phys. J. A 21, 323 (2004)

    Article  Google Scholar 

  13. N. Sparveris, R. Alarcon, A. Bernstein et al., Phys. Rev. Lett. 94, 022003 (2005)

    Article  ADS  Google Scholar 

  14. R. Beck, Eur. Phys. J. A 28, 173 (2006)

    Article  ADS  Google Scholar 

  15. M. Kotulla, AIP Conf. Proc. 904, 203 (2007)

    Article  ADS  Google Scholar 

  16. D. Dreschsel, L. Tiator, J. Phys. G: Nucl. Part. Phys. 18, 449 (1992)

    Article  ADS  Google Scholar 

  17. T. Sato, T.S.H. Lee, Phys. Rev. C 63, 055201 (2001)

    Article  ADS  Google Scholar 

  18. S. Kamalov, G.Y. Chen, S.N. Yang et al., Phys. Lett. B 522, 27 (2001)

    Article  ADS  Google Scholar 

  19. I. Aznauryan, Phys. Rev. C 67, 015209 (2003)

    Article  ADS  Google Scholar 

  20. C. Alexandrou, G. Koutsou, J. Negele et al., Phys. Rev. D 83, 014501 (2011)

    Article  ADS  Google Scholar 

  21. N. Isgur, Phys. Rev. D 25, 2394 (1982)

    Article  ADS  Google Scholar 

  22. S. Capstick, G. Karl, Phys. Rev. D 41, 2767 (1990)

    Article  ADS  Google Scholar 

  23. G. Ramalho, M. Pena, F. Gross, Phys. Rev. D 78, 114017 (2008)

    Article  ADS  Google Scholar 

  24. V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007)

    Article  ADS  Google Scholar 

  25. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  26. Y. Wunderlich, Int. J. Mod. Phys. Conf. Ser. 40, 1660068 (2016)

    Article  Google Scholar 

  27. A.M. Sandorfi, S. Hoblit, H. Kamano et al., J. Phys. G: Nucl. Part. Phys. 38, 053001 (2011)

    Article  ADS  Google Scholar 

  28. L. Markou, C.N. Papanicolas, E. Stiliaris, AMIAS analysis of the benchmark data, in preparation

  29. A.M. Bernstein, C.N. Papanicolas, AIP Conf. Proc. 904, 1 (2007)

    Article  ADS  Google Scholar 

  30. R. Arndt, I. Aznauryan, R. Davidson, Multipole analysis of a benchmark data set for pion photoproduction, in NSTAR 2001, Vol. 1 (World Scientific, 2001) pp. 467--492

  31. A2 Collaboration (P. Adlarson et al.), Phys. Rev. C 92, 024617 (2015)

    Article  ADS  Google Scholar 

  32. A2 Collaboration (S. Schumann, B.P. Otte et al.), Phys. Lett. B 750, 252 (2015)

    Article  Google Scholar 

  33. B.P. Otte, PhD Thesis, University Mainz (2015)

  34. A2 Collaboration (J. Annand et al.), Phys. Rev. C 93, 055209 (2016)

    Article  ADS  Google Scholar 

  35. E. Stiliaris, C.N. Papanicolas, AIP Conf. Proc. 904, 257 (2007)

    Article  ADS  Google Scholar 

  36. C.N. Papanicolas, E. Stiliaris, arXiv:1205.6505 (2012)

  37. A2 Homepage Mainz, https://wwwa2.kph.uni-mainz.de/

  38. H. Dutz, D. Krämer, B. Zucht et al., Nucl. Phys. A 601, 319 (1996)

    Article  ADS  Google Scholar 

  39. I. Anthony, J. Kellie, S. Hall et al., Nucl. Instrum. Methods Phys. Res., Sect. A 301, 230 (1991)

    Article  ADS  Google Scholar 

  40. S. Hall, G. Miller, R. Beck et al., Nucl. Instrum. Methods Phys. Res., Sect. A 368, 698 (1996)

    Article  ADS  Google Scholar 

  41. J. McGeorge, J. Kellie, J. Annand et al., Eur. Phys. J. A 37, 129 (2008)

    Article  ADS  Google Scholar 

  42. A. Starostin, B. Nefkens, E. Berger et al., Phys. Rev. C 64, 055205 (2001)

    Article  ADS  Google Scholar 

  43. A.R. Gabler, W. Doering, M. Fuchs et al., Nucl. Instrum. Methods Phys. Res., Sect. A 346, 168 (1994)

    Article  ADS  Google Scholar 

  44. R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)

    Article  ADS  Google Scholar 

  45. J. Ahrens, S. Altieri, J.R.M. Annand et al., Eur. Phys. J. A 26, 135 (2005)

    Article  ADS  Google Scholar 

  46. A. Belyaev, V. Get’man, V. Gorbenko et al., Nucl. Phys. B 213, 201 (1983)

    Article  ADS  Google Scholar 

  47. R. Leukel, PhD Thesis, University Mainz (2001)

  48. V. Get’man, V. Gorbenko, A.Y. Derkach et al., Nucl. Phys. B 188, 397 (1981)

    Article  ADS  Google Scholar 

  49. G. Chew, M. Goldberger, F. Low, Y. Nambu, Phys. Rev. 106, 1345 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  50. O. Hanstein, D. Drechsel, L. Tiator, Nucl. Phys. A 632, 561 (1998)

    Article  ADS  Google Scholar 

  51. C. Alexandrou, T. Leontiou, C.N. Papanicolas et al., Phys. Rev. D 91, 014506 (2015)

    Article  ADS  Google Scholar 

  52. C.N. Papanicolas, L. Koutsantonis, E. Stiliaris, A novel analysis method for emmision tomography, in preparation

  53. L. Markou, PhD Thesis, The Cyprus Institute (2018), in preparation

  54. K.M. Watson, Phys. Rev. 95, 228 (1954)

    Article  ADS  Google Scholar 

  55. R. Workman, R. Arndt, W. Briscoe et al., Phys. Rev. C 86, 035202 (2012)

    Article  ADS  Google Scholar 

  56. A. Omelaenko, Sov. J. Nucl. Phys. 34, 730 (1981)

    Google Scholar 

  57. Y. Wunderlich, R. Beck, L. Tiator, Phys. Rev. C 89, 055203 (2014)

    Article  ADS  Google Scholar 

  58. R. Davidson, Model dependence of $E2/M1$, in NSTAR 2001 (World Scientific, 2001) pp. 203--206

  59. L. Tiator, private communication (2016)

  60. R. Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences (Wiley, 1993)

  61. F.C. Porter, arXiv:0804.0380 (2008)

  62. C. Fernández-Ramírez, arXiv:0912.4158 (2009)

  63. C. Collicott, PhD Thesis, University Mainz (2015)

  64. R. Workman, M. Paris, W. Briscoe et al., Eur. Phys. J. A 47, 143 (2011)

    Article  ADS  Google Scholar 

  65. D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007) arXiv:0710.0306

    Article  ADS  Google Scholar 

  66. Bonn-Gatchina Partial Wave Analysis, https://pwa.hiskp.uni-bonn.de/

  67. CBELSA/TAPS Collaboration (E. Gutz et al.), Eur. Phys. J. A 50, 74 (2014) arXiv:1402.4125

    Article  Google Scholar 

  68. INS Data Analysis Center, http://gwdac.phys.gwu.edu/

  69. R. Workman, private communication (2017)

  70. Multiparameter Errors in Minuit-UP values, http://www.dnp.fmph.uniba.sk/cernlib/asdoc/minuit/node33 .html, accessed: 2017-07-28

  71. F. James, Function Minimization and Error Analysis, Version 94 (1994)

  72. C. Fernández-Ramírez, E.M. de Guerra, J. Udías, Phys. Rev. C 73, 042201 (2006)

    Article  ADS  Google Scholar 

  73. V. Pascalutsa, J.A. Tjon, Phys. Rev. C 70, 035209 (2004)

    Article  ADS  Google Scholar 

  74. S.S. Kamalov, S.N. Yang, D. Drechsel et al., Phys. Rev. C 64, 032201 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Papanicolas.

Additional information

Communicated by K.J. Peters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markou, L., Stiliaris, E. & Papanicolas, C.N. On hadron deformation: A model independent extraction of EMR from pion photoproduction data. Eur. Phys. J. A 54, 115 (2018). https://doi.org/10.1140/epja/i2018-12549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12549-7

Navigation