Skip to main content
Log in

Polarization observables and T-noninvariance in the weak charged current induced electron proton scattering

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this work, we have studied the total scattering cross section (\(\sigma\), differential scattering cross section (\( \mathrm{d}\sigma/\mathrm{d} Q^{2}\)) as well as the longitudinal (\( P_L(E_{e},Q^{2})\)), perpendicular (\( P_{P}(E_{e},Q^{2})\)), and transverse (\( P_{T}(E_{e},Q^{2})\)) components of the polarization of the final hadron (n, \(\Lambda\) and \(\Sigma^{0}\)) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high \( Q^{2}\) in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Punjabi et al., Eur. Phys. J. A 51, 79 (2015)

    Article  ADS  Google Scholar 

  2. S. Pacetti et al., Phys. Rep. 550-551, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. T.D. Lee, C.N. Yang, Phys. Rev. 126, 2239 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  4. M.M. Block, in Symmetries in Elementary Particle Physics, edited by A. Zichichi (Academic Press, 1965)

  5. M. Block, National Accelerator Laboratory 1968 Summer Study, Report B, 1-68-42, Vol. 1, p. 215

  6. S.L. Adler, Nuovo Cimento 30, 1020 (1963) 32

    Article  Google Scholar 

  7. I.J. Ketley, Nuovo Cimento 38, 302 (1965)

    Article  Google Scholar 

  8. S.M. Berman, M. Veltman, Phys. Lett. 12, 275 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Fujii, Y. Yamaguchi, Prog. Theor. Phys. 33, 552 (1965)

    Article  ADS  Google Scholar 

  10. A. Fujii, Y. Yamaguchi, Nuovo Cimento 43, 325 (1966)

    Article  ADS  Google Scholar 

  11. F. Cannata, R. Leonardi, F. Strocchi, Phys. Rev. D 1, 191 (1970)

    Article  ADS  Google Scholar 

  12. M.G. Doncel, E. De Rafael, Nuovo Cimento A 4, 363 (1971)

    Article  ADS  Google Scholar 

  13. A. De Rujula, E. De Rafael, Phys. Lett. B 32, 495 (1970)

    Article  ADS  Google Scholar 

  14. H. Okamura, Prog. Theor. Phys. 45, 1707 (1971)

    Article  ADS  Google Scholar 

  15. D.D. Javannic, M.M. Block, National Accelerator Laboratory 1969 Summer Study, Vol. 0014, p. 231

  16. A. Pais, Ann. Phys. 63, 361 (1971)

    Article  ADS  Google Scholar 

  17. C.H. Llewellyn Smith, Phys. Rep. 3, 261 (1972)

    Article  ADS  Google Scholar 

  18. R.E. Marshak, Riazuddin, C.P. Ryan, Theory of Weak Interactions in Particle Physics (Wiley-Interscience, 1969)

  19. M.M. Block et al., Phys. Rev. Lett. 12, 262 (1964)

    Article  ADS  Google Scholar 

  20. N. Cabibbo, F. Chilton, Phys. Rev. 137, B1628 (1965)

    Article  ADS  Google Scholar 

  21. L. Egardt, Nuovo Cimento 29, 954 (1963)

    Article  Google Scholar 

  22. O. Erriquez et al., Nucl. Phys. B 140, 123 (1978)

    Article  ADS  Google Scholar 

  23. O. Erriquez et al., Phys. Lett. B 70, 383 (1977)

    Article  ADS  Google Scholar 

  24. T. Eichten et al., Phys. Lett. B 40, 593 (1972)

    Article  ADS  Google Scholar 

  25. G. Fanourakis et al., Phys. Rev. D 21, 562 (1980)

    Article  ADS  Google Scholar 

  26. V.V. Ammosov et al., Z. Phys. C 36, 377 (1987)

    Article  ADS  Google Scholar 

  27. V.V. Ammosov et al., JETP Lett. 43, 716 (1986) Pisma Zh. Eksp. Teor. Fiz. 43

    ADS  Google Scholar 

  28. SKAT Collaboration (J. Brunner et al.), Z. Phys. C 45, 551 (1990)

    Article  Google Scholar 

  29. T2K Collaboration (A. Longhin), EPJ Web of Conferences 164, 01017 (2017)

    Article  Google Scholar 

  30. MicroBooNE Collaboration (A. Furmanski), PoS NOW 2016, 014 (2017)

    Google Scholar 

  31. DUNE Collaboration (B. Abi), arXiv:1706.07081 [physics.ins-det]

  32. ICARUS Collaboration (F. Varanini), EPJ Web of Conferences 164, 07017 (2017)

    Article  Google Scholar 

  33. K.M. Graczyk, B.E. Kowal, arXiv:1711.04868 [hep-ph].

  34. F. Akbar, M. Rafi Alam, M. Sajjad Athar, S.K. Singh, Phys. Rev. D 94, 114031 (2016)

    Article  ADS  Google Scholar 

  35. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Mod. Phys. Lett. A 19, 2815 (2004) Phys. Part. Nucl. 35

    Article  ADS  Google Scholar 

  36. K.M. Graczyk, Nucl. Phys. Proc. Suppl. 139, 150 (2005)

    Article  ADS  Google Scholar 

  37. K. Hagiwara, K. Mawatari, H. Yokoya, Nucl. Phys. Proc. Suppl. 139, 140 (2005)

    Article  ADS  Google Scholar 

  38. K.M. Graczyk, Nucl. Phys. A 748, 313 (2005)

    Article  ADS  Google Scholar 

  39. S.M. Bilenky, E. Christova, J. Phys. G 40, 075004 (2013)

    Article  ADS  Google Scholar 

  40. S.M. Bilenky, E. Christova, Phys. Part. Nucl. Lett. 10, 651 (2013)

    Article  Google Scholar 

  41. M. Valverde, J.E. Amaro, J. Nieves, C. Maieron, Phys. Lett. B 642, 218 (2006)

    Article  ADS  Google Scholar 

  42. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Mod. Phys. Lett. A 19, 2919 (2004)

    Article  ADS  Google Scholar 

  43. T. Katori, M. Martini, J. Phys. G 45, 013001 (2018)

    Article  ADS  Google Scholar 

  44. J.G. Morfin, J. Nieves, J.T. Sobczyk, Adv. High Energy Phys. 2012, 934597 (2012)

    Article  Google Scholar 

  45. J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012)

    Article  ADS  Google Scholar 

  46. N. Cabibbo, Phys. Lett. 12, 137 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  47. S.L. Glashow, Phys. Rev. Lett. 14, 35 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  48. H.W. Fearing, P.C. McNamee, R.J. Oakes, Nuovo Cimento A 60, 10 (1969)

    Article  ADS  Google Scholar 

  49. W.Y.P. Hwang, E.M. Henley, Phys. Rev. D 38, 798 (1988)

    Article  ADS  Google Scholar 

  50. S.L. Mintz, J. Phys. G 30, 565 (2004)

    Article  ADS  Google Scholar 

  51. S.L. Mintz, M.A. Barnett, Phys. Rev. D 66, 117501 (2002)

    Article  ADS  Google Scholar 

  52. S.L. Mintz, Nucl. Phys. A 690, 711 (2001)

    Article  ADS  Google Scholar 

  53. F. Akbar, M. Sajjad Athar, A. Fatima, S.K. Singh, Eur. Phys. J. A 53, 154 (2017)

    Article  ADS  Google Scholar 

  54. https://www.jlab.org/12GeV/

  55. http://www.kph.uni-mainz.de/eng/108.php

  56. N. Cabibbo, E.C. Swallow, R. Winston, Annu. Rev. Nucl. Part. Sci. 53, 39 (2003)

    Article  ADS  Google Scholar 

  57. S. Weinberg, Phys. Rev. 112, 1375 (1958)

    Article  ADS  Google Scholar 

  58. M.L. Goldberger, S.B. Treiman, Phys. Rev. 111, 354 (1958)

    Article  ADS  Google Scholar 

  59. Y. Nambu, Phys. Rev. Lett. 4, 380 (1960)

    Article  ADS  Google Scholar 

  60. H. Ohtsubo, A. Fujii, Nuovo Cimento A 42, 109 (1966)

    Article  ADS  Google Scholar 

  61. L.A. Ahrens et al., Phys. Lett. B 202, 284 (1988)

    Article  ADS  Google Scholar 

  62. B.R. Holstein, in Hyperon 99, Proceedings of the Hyperon Physics Symposium Fermilab, Sept. 27--29, 1999, edited by D.A. Jensen, E. Monnier, Fermilab rep. FERMILAB-Conf-00/059-E (2000)

  63. R. Bradford et al., Nucl. Phys. Proc. Suppl. 159, 127 (2006)

    Article  ADS  Google Scholar 

  64. V. Bernard, L. Elouadrhiri, U.G. Meissner, J. Phys. G 28, R1 (2002)

    Article  ADS  Google Scholar 

  65. R. Oehme, R. Winston, A. Garcia, Phys. Rev. D 3, 1618 (1971)

    Article  ADS  Google Scholar 

  66. S.M. Bilenky, Basics of Introduction to Feynman Diagrams and Electroweak Interactions Physics (Editions Frontières, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sajjad Athar.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, A., Sajjad Athar, M. & Singh, S.K. Polarization observables and T-noninvariance in the weak charged current induced electron proton scattering. Eur. Phys. J. A 54, 95 (2018). https://doi.org/10.1140/epja/i2018-12534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12534-2

Navigation