Advertisement

Gamma-ray branching ratios in the decay of 49Cr

  • B. Blank
  • M. Aouadi
  • P. Ascher
  • M. Gerbaux
  • J. Giovinazzo
  • T. Goigoux
  • S. Grévy
  • T. Kurtukian Nieto
  • C. Magron
  • A. de Roubin
  • K. Johnston
Regular Article - Experimental Physics
  • 12 Downloads

Abstract.

The \(\gamma\)-decay branching ratios of 49V have been studied in the \(\beta\)/EC decay of 49Cr. The \(\gamma\)-ray spectrum has been measured with a 70% relative efficiency co-axial germanium detector calibrated in efficiency with a precision of about 0.5%. The primary result is the measurement of the relative branching ratios of the three main \(\gamma\) rays in the decay of 49Cr. Large discrepancies were found with a previous experimental work. The 49Cr sample was produced by proton impact on a ZrO2 target and collected at the ISOLDE facility of CERN and enabled us to re-evaluate the decay scheme of 49Cr. The new data allow the use of this nucleus for future high-precision calibration work.

References

  1. 1.
    B. Blank et al., Nucl. Instrum. Methods A 776, 34 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Hardy, I.S. Towner, Phys. Rev. C 91, 025501 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    R.G. Helmer et al., Nucl. Instrum. Methods A 511, 360 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    R.G. Helmer, N. Nica, J.C. Hardy, V.E. Iacob, Appl. Radiat. Isotop. 60, 173 (2004)CrossRefGoogle Scholar
  5. 5.
    J.J. O’Connor, M.L. Pool, J.D. Kurbatov, Phys. Rev. 62, 413 (1942)ADSCrossRefGoogle Scholar
  6. 6.
    O. Huber, O. Lienhard, H. Wäffler, Helv. Phys. Acta 17, 195 (1944)Google Scholar
  7. 7.
    B. Crasemann, H.T. Easterday, Phys. Rev. 90, 1124 (1953)ADSCrossRefGoogle Scholar
  8. 8.
    R.H. Nussbaum et al., Physica 20, 165 (1954)ADSCrossRefGoogle Scholar
  9. 9.
    K.A. Baskova, S.S. Vasilev, M.A. Khamo-Leila, L.Y. Shavtvalov, Bull. Acad. Sci. USSR 29, 201 (1965)Google Scholar
  10. 10.
    P.H. Barker, R.D. Connor, Nucl. Phys. A 121, 128 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    H.C. Cheung, S.K. Mark, Nucl. Phys. A 176, 219 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    O.B. Okon, H. Bakhru, M.K. Dewanjee, I.L. Preiss, Phys. Rev. C 7, 239 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    S. Tabor, L.K. Fifield, K.C. Young Jr., R.M. Zurmühle, Phys. Rev. C 10, 1484 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    S.V. Jackson, E.A. Henry, R.A. Meyer, Phys. Rev. C 12, 2094 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    T.W. Burrows, Nucl. Data Sheets 109, 1879 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    R.H. Nussbaum, R.V. Lieshout, A.H. Wapstra, Phys. Rev. 92, 207 (1953)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    W. Menti, Helv. Phys. Acta 40, 981 (1967)Google Scholar
  19. 19.
    R. Firestone, Table of Isotopes, 8th Edition (John Wiley & Sons, Inc., New York, 1996)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. Blank
    • 1
  • M. Aouadi
    • 1
  • P. Ascher
    • 1
  • M. Gerbaux
    • 1
  • J. Giovinazzo
    • 1
  • T. Goigoux
    • 1
  • S. Grévy
    • 1
  • T. Kurtukian Nieto
    • 1
  • C. Magron
    • 1
  • A. de Roubin
    • 1
    • 2
  • K. Johnston
    • 3
  1. 1.Centre d’Etudes Nucléaires de Bordeaux Gradignan, UMR 5797 CNRS/IN2P3Université de BordeauxGradignan CedexFrance
  2. 2.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  3. 3.ISOLDE/CERN, EP DepartmentGenevaSwitzerland

Personalised recommendations