Skip to main content
Log in

Understanding the thermometry of hot nuclei from the energy spectra of light charged particles

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In the Fermi energy domain, the temperature of hot nuclei can be determined using the energy spectra of evaporated light charged particles. But this method of measurement is not without difficulties both theoretical and experimental. The present study aims to disentangle the respective influences of different factors on the quality of this measurement: the physics, the detection (a \( 4\pi\) detector array such as INDRA) and the experimental procedure. This analysis demonstrates the possibility of determining from an energy spectrum, with an accuracy of about 10%, the true apparent temperature felt by a given type of particle emitted from a hot nucleus. This temperature allows to deduce the initial temperature using an appropriate method. However, three conditions are necessary: a perfect particle detector, important statistics and very weak secondary emissions. According to the GEMINI event generator, for hot intermediate mass nuclei, only deuterons and tritons could meet these conditions. In this case the determination may be better than 15%. With a realistic experimental device, insufficient angular resolution and topological distortions, caused by detection, can distort spectra to the point where it is very difficult to determine the apparent temperature correctly. Experimental reconstruction of the moving frame of the hot nucleus can also be responsible for this deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Weisskopf, Phys. Rev. 52, 295 (1937)

    Article  ADS  Google Scholar 

  2. T. Ericson, Adv. Phys. 9, 425 (1960)

    Article  ADS  Google Scholar 

  3. D.J. Morrissey, W. Benenson, W. Friedman, Annu. Rev. Nucl. Part. Sci. 44, 27 (1994)

    Article  ADS  Google Scholar 

  4. F. Gulminelli, Ann. Phys. Fr. 29, 1 (2004)

    Article  Google Scholar 

  5. D.H.E. Gross, Entropy 6, 158 (2004)

    Article  ADS  Google Scholar 

  6. D. Gross, Phys. Rep. 279, 119 (1997)

    Article  ADS  Google Scholar 

  7. B. Borderie, M. Rivet, Prog. Part. Nucl. Phys. 61, 551 (2008)

    Article  ADS  Google Scholar 

  8. A. Kelic, J.B. Natowitz, K.H. Schmidt, Eur. Phys. J. A 30, 203 (2006)

    Article  ADS  Google Scholar 

  9. C. Toepffer, C.-Y. Wong, Phys. Rev. C 25, 1018 (1982)

    Article  ADS  Google Scholar 

  10. J. Cugnon, Phys. Lett. B 135, 374 (1984)

    Article  ADS  Google Scholar 

  11. D. Jouan et al., Z. Phys. A 340, 63 (1991)

    Article  ADS  Google Scholar 

  12. B. Borderie et al., Eur. Phys. J. A 6, 197 (1999)

    Article  ADS  Google Scholar 

  13. P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 427, 278 (1984)

    Article  ADS  Google Scholar 

  14. S. Levit, P. Bonche, Nucl. Phys. A 437, 426 (1985)

    Article  ADS  Google Scholar 

  15. J. Besprosvany, S. Levit, Phys. Lett. B 217, 1 (1989)

    Article  ADS  Google Scholar 

  16. J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995)

    Article  ADS  Google Scholar 

  17. J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002)

    Article  ADS  Google Scholar 

  18. A. Le Fèvre, O. Schapiro, A. Chbihi, Nucl. Phys. A 657, 446 (1999)

    Article  ADS  Google Scholar 

  19. A. Siwek, D. Durand, F. Gulminelli, J. Péter, Phys. Rev. C 57, 2507 (1998)

    Article  ADS  Google Scholar 

  20. R. Charity, Computer Code GEMINI (unpublished)

  21. R. Charity et al., Nucl. Phys. A 483, 371 (1988)

    Article  ADS  Google Scholar 

  22. N.G. Nicolis et al., Phys. Rev. C 45, 2393 (1992)

    Article  ADS  Google Scholar 

  23. D. Durand, Nucl. Phys. A 541, 266 (1992)

    Article  ADS  Google Scholar 

  24. D. Gruyer et al., Phys. Rev. C 92, 064606 (2015)

    Article  ADS  Google Scholar 

  25. E. Vient et al., Nucl. Phys. A 700, 555 (2002)

    Article  ADS  Google Scholar 

  26. J.C. Steckmeyer et al., Nucl. Phys. A 686, 537 (2001)

    Article  ADS  Google Scholar 

  27. J. Pouthas et al., Nucl. Instrum. Methods Phys. Res. A 357, 418 (1995)

    Article  ADS  Google Scholar 

  28. E. Vient, Méthodologie de la calorimétrie et de la thermométrie des noyaux chauds formés lors de collisions aux énergies de Fermi, Mémoire d’habilitation à diriger des recherches, Université de Caen (2006)

  29. W.E. Parker et al., Phys. Rev. C 44, 774 (1991)

    Article  ADS  Google Scholar 

  30. L. Louis, C. Vaz, J. Alexander, Z. Phys. A 318, 231 (1984)

    Article  ADS  Google Scholar 

  31. N. Ajitanand, R. Lacey, G. Peaslee, E. Duek, J.M. Alexander, Nucl. Instrum. Methods Phys. Res. A 243, 111 (1986)

    Article  ADS  Google Scholar 

  32. R.J. Charity et al., Phys. Rev. C 63, 024611 (2001)

    Article  ADS  Google Scholar 

  33. R. Wada et al., Phys. Rev. C 39, 497 (1989)

    Article  ADS  Google Scholar 

  34. K. Hagel et al., Nucl. Phys. A 486, 429 (1988)

    Article  ADS  Google Scholar 

  35. J.R. Taylor, Introduction to Error Analysis, 2nd edition (University Science Books, 1997)

  36. W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in Fortran 77, the Art of scientific computing, 2nd edition, Vol. 1 (Cambridge University Press, 1992) p. 614

  37. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  38. J.M. Alexander, M.T. Magda, S. Landowne, Phys. Rev. C 42, 1092 (1990)

    Article  ADS  Google Scholar 

  39. A.D. Nguyen, Caractérisation spatio-temporelle de la matière dans la fragmentation nucléaire, PhD Thesis, Université de Caen (1999)

  40. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  41. H.A. Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to E. Vient.

Additional information

Communicated by N. Kalantar-Nayestanaki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

INDRA Collaboration., Vient, E., Augey, L. et al. Understanding the thermometry of hot nuclei from the energy spectra of light charged particles. Eur. Phys. J. A 54, 96 (2018). https://doi.org/10.1140/epja/i2018-12531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12531-5

Navigation