Skip to main content
Log in

Angular correlations in the prompt neutron emission of spontaneous fission of 252Cf

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Neutron angular distributions in spontaneous fission of 252Cf are investigated. The CORA experiment, performed at IPHC Strasbourg, aims at elucidating neutron emission mechanisms in the fission process. The experimental setup is composed of the angle-sensitive twin ionisation chamber CODIS for the detection of fission fragments and the DEMON neutron detector assembly. The development of a simulation toolkit based on GEANT4 and MENATE_R is described, adapted as a strategy to investigate the influence of experimental conditions on the observed properties of neutrons emitted. Besides the kinematic neutron anisotropy in the laboratory system due to neutron evaporation from moving fragments, two additional effects are discussed which may have an influence on the angular distributions of neutrons: scission neutrons and dynamic neutron emission anisotropy in the CM system of fragments due to the spin carried by fragments. A new analysis method is presented to disentangle the dynamic anisotropy from the other effects in an independent way. For the dynamic anisotropy only an upper limit could be found. Results for the angular correlation \( (\mathrm{n},\mathrm{n})\) between two evaporated neutrons and the correlation \( (\mathrm{n},\mathrm{LF})\) between an evaporated neutron and the Light Fragment direction of flight are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.F. Weisskopf, Phys. Rev. 52, 295 (1937)

    Article  ADS  Google Scholar 

  2. H.R. Bowman et al., Phys. Rev. 126, 2120 (1962)

    Article  ADS  Google Scholar 

  3. C.B. Franklyn et al., Phys. Lett. B 78, 564 (1978)

    Article  ADS  Google Scholar 

  4. A. Gavron, Phys. Rev. C 13, 2562 (1976)

    Article  ADS  Google Scholar 

  5. V.E. Bunakov, I.S. Guseva, in Proceedings, ISINN-13, Dubna, Russia, (JINR, 2006) p. 293, http://isinn.jinr.ru/proceedings/isinn-13/pdf/Guseva.pdf

  6. V.E. Bunakov, I.S. Guseva et al., Bull. Russ. Acad. Sci. Phys. 70, 1853 (2006)

    Google Scholar 

  7. K. Skarsvag, K. Bergheim, Nucl. Phys. 45, 72 (1963)

    Article  Google Scholar 

  8. I.S. Guseva, in Proceedings, ISINN-23, Dubna, Russia, (JINR, 2016) p. 80, http://isinn.jinr.ru/proceedings/isinn-23/pdf/Guseva.pdf

  9. A.S. Vorobyev et al., EPJ Web of Conferences 8, 03004 (2010)

    Article  Google Scholar 

  10. F. Gönnenwein, Proceedings, Seminar on Fission, Corsendonk Priory, Belgium (World Scientific, 2008) p. 3

  11. L. Stuttgé, Proceedings, Seminar on Fission, Het Pand, Gent, Belgium (World Scientific, 2011) p. 181.

  12. I. Tilquin et al., Nucl. Instrum. Methods A 365, 446 (1995)

    Article  ADS  Google Scholar 

  13. Yu.N. Kopatch, M. Mutterer, D. Schwalm, P. Thirolf, F. Gönnenwein, Phys. Rev. C 65, 044614 (2002)

    Article  ADS  Google Scholar 

  14. J. Randrup, R. Vogt, Phys. Rev. C 89, 044601 (2014)

    Article  ADS  Google Scholar 

  15. N.V. Kornilov, IAEA Vienna, INDC(CCP)-435, (2002) 61

  16. N.V. Kornilov et al., Nucl. Phys. A 686, 187 (2001)

    Article  ADS  Google Scholar 

  17. J. Terrell, Phys. Rev. 127, 880 (1962)

    Article  ADS  Google Scholar 

  18. A.M. Gagarski, I.S. Guseva, Abstract, ISINN-20, Dubna, Russia, (2012) p. 42, http://isinn.jinr.ru/past-isinns/isinn-20/prog_may_23/Gagarski.pdf

  19. K.J. Le Couteur, D.W. Lang, Nucl. Phys. 13, 32 (1959)

    Article  Google Scholar 

  20. J.S. Pringle, D. Brooks, Phys. Rev. Lett. 35, 1563 (1975)

    Article  ADS  Google Scholar 

  21. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  22. P. Désesquelles et al., Nucl. Instrum. Methods A 307, 366 (1991)

    Article  ADS  Google Scholar 

  23. S.A. Telezhnikov, Proceedings, ISINN-19, Dubna, Russia, (JINR, 2012) p. 74, http://isinn.jinr.ru/proceedings/isinn-19/pdf

  24. A.M. Gagarski, I.S. Guseva et al., Bull. Russ. Acad. Sci.: Phys. 72, 773 (2008)

    Article  Google Scholar 

  25. A. Chietera, PhD Thesis, University of Strasbourg, France, (2015) https://tel.archives-ouvertes.fr/tel-01561087/document

  26. J.P. Lestone, Nucl. Data Sheets 131, 357 (2016)

    Article  ADS  Google Scholar 

  27. N. Carjan, M. Rizea, Phys. Lett. 747, 178 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Stuttgé.

Additional information

Communicated by A. Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chietera, A., Stuttgé, L., Gönnenwein, F. et al. Angular correlations in the prompt neutron emission of spontaneous fission of 252Cf. Eur. Phys. J. A 54, 98 (2018). https://doi.org/10.1140/epja/i2018-12529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12529-y

Navigation