Advertisement

Fraunhofer and refractive scattering of heavy ions in strong laser fields

  • Şerban Mişicu
  • Florin Carstoiu
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract.

Until recently the potential scattering of a charged particle in a laser field received attention exclusively in atomic physics. The differential cross-section of laser-assisted electron-atom collisions for n emitted or absorbed photons is provided by a simple law which casts the result as a product between the field-free value and the square of the Bessel function of order n with its argument containing the effect of the laser in a non-perturbative way. From the experimental standpoint, laser-assisted electron-atom collisions are important because they allow the observation of multiphoton effects even at moderate laser intensities. The aim of this study is to calculate the nucleus-nucleus differential cross section in the field of a strong laser with wavelengths in the optical domain such that the low-frequency approximation is fulfilled. We investigate the dependence of the n-photon differential cross-section on the intensity, photon energy and shape of the pulse for a projectile/target combination at a fixed collision energy which exhibits a superposition of Fraunhofer and refractive behavior. We also discuss the role of the laser perturbation on the near and farside decomposition in the angular distribution, an issue never discussed before in the literature. We apply a standard optical model approach to explain the experimental differential cross-section of the elastic scattering of 4He on 58Ni at a laboratory energy E = 139 MeV and resolve the corresponding farside/nearside (F/N) decomposition in the field-free case. We give an example of reaction in which Fraunhofer diffraction and refractive rainbow hump effects are easily recognized in the elastic angular distribution. Next, we apply the Kroll-Watson theorem, in order to determine the n -photon contributions to the cross-section for continuous-wave (cw) and modulated pulses. In the elastic scattering of heavy ions in a radiation field of low intensity, the amplitude drops by orders of magnitude with respect to the unperturbed case once the exchange of photons is initiated. For intensities approaching \(I=10^{17}\) W/cm2 multiphoton effects become important. In the case of short laser pulses we conclude that the strength of n-photon contribution increases with the pulse duration.

References

  1. 1.
    N.M. Kroll, K.M. Watson, Phys. Rev. A 8, 804 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    F.V. Bunkin, A.E. Kazakov, M.V. Fedorov, Usp. Fiz. Nauk 107, 559 (1972) Sov. Phys. Usp. 15CrossRefGoogle Scholar
  3. 3.
    A. Weingartshofer, C. Jung, Multiphoton Free-Free Transitions, in Multiphoton Ionization of Atoms, edited by S.L. Chin, P. Lambropoulos (Academic Press, Toronto, 1984) p. 155Google Scholar
  4. 4.
    D.F. Zaretskii, V.V. Lomonosov, Sov. Phys. JETP 45, 445 (1977)ADSGoogle Scholar
  5. 5.
    R.M. Galvão, N.S. Almeida, L.C.M. Miranda, Lett. Nuovo Cimento 38, 375 (1983)CrossRefGoogle Scholar
  6. 6.
    I.F. Barna, S. Varró, Laser Part. Beams 33, 299 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    I.F. Barna, S. Varró, Nucl. Instrum. Methods Phys. B 369, 77 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    S. Mişicu, M. Rizea, J. Phys. G 40, 095101 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    W.C. Henneberger, Phys. Rev. Lett. 21, 838 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    K. Alder, A. Winther, Electromagnetic Excitation-Theory of Coulomb Excitation With Heavy Ions (North-Holland, Amsterdam, 1975)Google Scholar
  11. 11.
    M. Abramovitz, I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, 1962)Google Scholar
  12. 12.
    A. Messiah, Mécanique Quantique, Tome II (Dounod, Paris, 1960)Google Scholar
  13. 13.
    D.A. Goldberg, S.M. Smith, H.G. Pugh, P.G. Roos, N.S. Wall, Phys. Rev. C 7, 1938 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    G. Hauser et al., Nucl. Phys. A 128, 81 (1969)ADSCrossRefGoogle Scholar
  15. 15.
    J. Albinski et al., Nucl. Phys. A 445, 477 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rev. C 16, 80 (1977)ADSCrossRefGoogle Scholar
  17. 17.
    D. Gogny, Hartree-Fock Bogolyubov method with density dependent interactions, in Proceedings of the International Conference on Nuclear Physics, Munich 1973, edited by J. de Boer, H.J. Mang, Vol. 1 (North-Holland, Amsterdam, 1974) p. 48Google Scholar
  18. 18.
    F. Carstoiu, M. Lassaut, Nucl. Phys. A 597, 269 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Negele, K. Yazaki, Phys. Rev. Lett. 47, 71 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    M. Beiner, R.J. Lombard, Ann. Phys. (N.Y.) 86, 262 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    I. Angeli, Heavy Ion Phys. 8, 23 (1998)Google Scholar
  22. 22.
    S. Mişicu, F. Carstoiu, Phys. Rev. C 83, 054622 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    S. Mişicu, F. Carstoiu, Phys. Rev. C 84, 051601(R) (2011)ADSGoogle Scholar
  24. 24.
    D.M. Brink, N. Takigawa, Nucl. Phys. A 279, 159 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    P. Mulser, D. Bauer, High Power Laser-Matter Interaction, Springer Tracts in Modern Physics, Vol. 228 (Springer, Heidelberg, 2010)Google Scholar
  26. 26.
    F. Negoiţa et al., Rom. Rep. Phys. 68, S137 (2016)Google Scholar
  27. 27.
    C.J. Joachain, N.J. Kylstra, R.M. Potvliege, Atoms in Intense Laser Fields (Cambridge University Press, Cambridge, 2012)Google Scholar
  28. 28.
    J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edition (Elsevier, Amsterdam, 2006)Google Scholar
  29. 29.
    H. Krüger, Ch. Jung, Phys. Rev. A 17, 1706 (1978)ADSCrossRefGoogle Scholar
  30. 30.
    R. Daniele, G. Ferrante, S. Bivona, J. Phys. B 14, L213 (1981)CrossRefGoogle Scholar
  31. 31.
    A. Weingartshofer, J.K. Holmes, J. Sabbaghit, S.L. Chin, J. Phys. B 16, 1805 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    Yu.A. Litvinov et al., Nucl. Instrum. Methods Phys. B 317, 603 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    M.O. Musa, A. Mac Donald, L. Tidswell, J. Holmes, B. Wallbank, J. Phys. B 43, 175201 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    B.A. de Harak et al., Plasma Sources Sci. Technol. 25, 035201 (2016)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Theoretical Physics,National Institute for Physics and Nuclear Engineering “Horia Hulubei”Măgurele-BucharestRomania

Personalised recommendations