Skip to main content
Log in

New anisotropic fluid spheres from embedding

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The embedding of the manifold into a 5-dimensional flat spacetime leads to a relationship between the gravitational metric potentials. The embedding condition is solved to obtain a new exact solution for an anisotropic matter distribution. We show that the potentials are well behaved, the matter variables have realistic profiles and the solution can be utilized to construct relativistic compact fluid spheres. A detailed investigation of the astrophysical objects 4U 1538-52, Her X-1 and SAX J1808.4-3658 is undertaken. The predicted radii generated through the observed masses for our models are consistent with the above astrophysical objects and indicate that the new exact solution represents compact spheres. The study reveals that complicated geometries arise from embedding and they are physically relevant in the study of observed compact bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Malaver, World Sci. News 36, 1 (2016)

    Google Scholar 

  2. P. Mafa Takisa, S.D. Maharaj, Astrophys. Space Sci. 361, 262 (2016)

    Article  ADS  Google Scholar 

  3. S.D. Maharaj, D. Kileba Matondo, P. Mafa Takisa, Int. J. Mod. Phys. D 26, 1750014 (2017)

    Article  ADS  Google Scholar 

  4. S.K. Maurya, A. Banerjee, S. Hansraj, Phys. Rev. D 97, 044022 (2018)

    Article  ADS  Google Scholar 

  5. J. Jeans, Mon. Not. R. Astron. Soc. 82, 122 (1922)

    Article  ADS  Google Scholar 

  6. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  7. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. K. Dev, M. Gleiser, Gen. Relativ. Gravit. 34, 1793 (2002)

    Article  Google Scholar 

  9. K. Dev, M. Gleiser, Gen. Relativ. Gravit. 35, 1435 (2003)

    Article  ADS  Google Scholar 

  10. R. Sharma, B.S. Ratanpal, Int. J. Mod. Phys. D 22, 1350074 (2013)

    Article  ADS  Google Scholar 

  11. S.A. Ngubelanga, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 357, 74 (2015)

    Article  ADS  Google Scholar 

  12. M.H. Murad, S. Fatema, Eur. Phys. J. C 75, 533 (2015)

    Article  ADS  Google Scholar 

  13. M.H. Murad, S. Fatema, Eur. Phys. J. Plus 130, 3 (2015)

    Article  ADS  Google Scholar 

  14. M.H. Murad, Astrophys. Space Sci. 361, 20 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers, E. Herlt, Exact Solution to Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)

  16. S.K. Maurya, Y.K. Gupta, B. Dayanandan, S. Ray, Eur. Phys. J. C 76, 266 (2016)

    Article  ADS  Google Scholar 

  17. S.K. Maurya, Y.K. Gupta, S. Ray, D. Deb, Eur. Phys. J. C 76, 693 (2016)

    Article  ADS  Google Scholar 

  18. S.K. Maurya, Y.K. Gupta, T.T. Smitha, F. Rahaman, Eur. Phys. J. A 52, 191 (2016)

    Article  ADS  Google Scholar 

  19. S.K. Maurya, Y.K. Gupta, S. Ray, D. Deb, Eur. Phys. J. C 77, 45 (2017)

    Article  ADS  Google Scholar 

  20. P. Bhar, S.K. Maurya, Y.K. Gupta, T. Manna, Eur. Phys. J. A 52, 312 (2016)

    Article  ADS  Google Scholar 

  21. K.N. Singh, P. Bhar, N. Pant, Astrophys. Space Sci. 361, 339 (2016)

    Article  ADS  Google Scholar 

  22. K.N. Singh, N. Pant, Eur. Phys. J. C 76, 524 (2016)

    Article  ADS  Google Scholar 

  23. T. Gangopadhyay, S. Ray, X.-D. Li, J. Dey, M. Dey, Mon. Not. R. Astron. Soc. 431, 3216 (2013)

    Article  ADS  Google Scholar 

  24. M. Kohler, K.L. Chao, Z. Naturforsch. Ser. A 20, 1537 (1965)

    ADS  Google Scholar 

  25. K. Schwarzschild, Sitz. Deut. Akad. Wiss. Math.-Phys. Berlin 24, 424 (1916)

    Google Scholar 

  26. K. Lake, Phys. Rev. D 67, 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. C.W. Misner, D.H. Sharp, Phys. Rev. B 136, 571 (1964)

    Article  ADS  Google Scholar 

  28. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  29. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  30. A. Di Prisco, E. Fuenmayor, L. Herrera, V. Varela, Phys. Lett. A 195, 23 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  31. L. Herrera, E. Fuenmayor, P. Leon, Phys. Rev. D 93, 024047 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

    Article  ADS  Google Scholar 

  33. M.K. MaK, P.N. Dobson, T. Harko, Europhys. Lett. 55, 310 (2001)

    Article  ADS  Google Scholar 

  34. C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  35. P. Haensel, J.L. Zdunik, R. Schaefer, Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  36. F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005)

    Article  ADS  Google Scholar 

  37. M.A. Perez-Garcia, J. Silk, J.R. Stone, Phys. Rev. Lett. 105, 141101 (2010)

    Article  ADS  Google Scholar 

  38. H. Rodrigues, S.B. Duarte, J.C.T. de Oliveira, Astrophys. J. 730, 31 (2011)

    Article  ADS  Google Scholar 

  39. G.H. Bordbar, A.R. Peivand, Res. Astron. Astrophys. 11, 851 (2011)

    Article  ADS  Google Scholar 

  40. X.-D. Li, Z.-G. Dai, Z.-R. Wang, Astron. Astrophys. 303, L1 (1995)

    ADS  Google Scholar 

  41. I. Bombaci, Phys. Rev. C 55, 1587 (1997)

    Article  ADS  Google Scholar 

  42. M. Dey, I. Bombaci, J. Dey, S. Ray, B.C. Samanta, Phys. Lett. B 438, 123 (1998)

    Article  ADS  Google Scholar 

  43. X.-D. Li, I. Bombaci, M. Dey, J. Dey, E.P.J. van den Heuvel, Phys. Rev. Lett. 83, 3776 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Maurya.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Maharaj, S.D. New anisotropic fluid spheres from embedding. Eur. Phys. J. A 54, 68 (2018). https://doi.org/10.1140/epja/i2018-12504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12504-8

Navigation