Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory

Regular Article - Theoretical Physics
  • 22 Downloads

Abstract.

Five-dimensional collective Hamiltonian based on the covariant density functional theory has been applied to study the low-lying states of even-even 148-162Gd isotopes. The shape evolution from 148Gd to 162Gd is presented. The experimental energy spectra and intraband B(E2) transition probabilities for the 148-162Gd isotopes are reproduced by the present calculations. The relative B(E2) ratios in present calculations are also compared with the available interacting boson model results and experimental data. It is found that the occupations of neutron \(1i_{13/2}\) orbital result in the well-deformed prolate shape, and are essential for Gd isotopes.

References

  1. 1.
    R.F. Casten, N.V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    D. Tonev, A. Dewald, T. Klug, P. Petkov, J. Jolie, A. Fitzler, O. Möller, S. Heinze, P. von Brentano, R.F. Casten, Phys. Rev. C 69, 034334 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Z.Q. Sheng, J.Y. Guo, Mod. Phys. Lett. A 20, 2711 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    R. Fossion, D. Bonatsos, G.A. Lalazissis, Phys. Rev. C 73, 044310 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    R. Rodríguez-Guzmán, P. Sarriguren, Phys. Rev. C 76, 064303 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    L.M. Robledo, R.R. Rodríguez-Guzmán, P. Sarriguren, Phys. Rev. C 78, 034314 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Leviatan, Phys. Rev. Lett. 77, 818 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    P. Van Isacker, Phys. Rev. Lett. 83, 4269 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    A. Leviatan, P. Van Isacker, Phys. Rev. Lett. 89, 222501 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    A. Leviatan, Prog. Part. Nucl. Phys. 66, 93 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A. Leviatan, J.E. García-Ramos, P. Van Isacker, Phys. Rev. C 87, 021302 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    R.F. Casten, R.B. Cakirli, K. Blaum, A. Couture, Phys. Rev. Lett. 113, 112501 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    C. Bahri, D. Rowe, Nucl. Phys. A 662, 125 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    D. Rowe, Nucl. Phys. A 745, 47 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    C. Kremer, J. Beller, A. Leviatan, N. Pietralla, G. Rainovski, R. Trippel, P. Van Isacker, Phys. Rev. C 89, 041302 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    C. Kremer, J. Beller, A. Leviatan, N. Pietralla, G. Rainovski, R. Trippel, P. Van Isacker, Phys. Rev. C 92, 039902 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    P. Van Isacker, Nucl. Phys. News 24, 23 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    D. Vretenar, A. Afanasjev, G. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    J. Meng (Editor), Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics, Vol. 10 (World Scientific, Singapore, 2016)Google Scholar
  23. 23.
    T. Nikšić, Z.P. Li, D. Vretenar, L. Próchniak, J. Meng, P. Ring, Phys. Rev. C 79, 034303 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    T. Nikšić, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Z.P. Li, T. Nikšić, D. Vretenar, J. Meng, G. Lalazissis, P. Ring, Phys. Rev. C 79, 054301 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Z.P. Li, T. Nikšić, D. Vretenar, J. Meng, Phys. Rev. C 80, 061301 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Z.P. Li, T. Nikšić, D. Vretenar, J. Meng, Phys. Rev. C 81, 034316 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    C.Y. Song, Z.P. Li, D. Vretenar, J. Meng, Sci. China Phys. Mech. Astron. 54, 222 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Z.P. Li, B.Y. Song, J.M. Yao, D. Vretenar, J. Meng, Phys. Lett. B 726, 866 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Z.P. Li, J.M. Yao, D. Vretenar, T. Nikšić, H. Chen, J. Meng, Phys. Rev. C 84, 054304 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J. Xiang, Z.P. Li, Z.X. Li, J.M. Yao, J. Meng, Nucl. Phys. A 873, 1 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    J.J. Sun, Z. Shi, X.Q. Li, H. Hua, C. Xu, Q.B. Chen, S.Q. Zhang, C.Y. Song, J. Meng, X.G. Wu, et al., Phys. Lett. B 734, 308 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    T. Nikšić, P. Marević, D. Vretenar, Phys. Rev. C 89, 044325 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Z.H. Wang, J. Xiang, W.H. Long, Z.P. Li, J. Phys. G: Nucl. Part. Phys. 42, 045108 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Y.Y. Wang, Z. Shi, Q.B. Chen, S.Q. Zhang, C.Y. Song, Phys. Rev. C 93, 044309 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Z.P. Li, T. Nikšić, D. Vretenar, P. Ring, J. Meng, Phys. Rev. C 81, 064321 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Z.P. Li, C.Y. Li, J. Xiang, J.M. Yao, J. Meng, Phys. Lett. B 717, 470 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Fu, H. Mei, J. Xiang, Z. Li, J. Yao, J. Meng, Phys. Rev. C 87, 054305 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Z. Shi, S.Q. Zhang, Acta. Phys. Pol. B Proc. Suppl. 8, 725 (2015)CrossRefGoogle Scholar
  40. 40.
    P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    L. Próchniak, K. Zajac, K. Pomorski, S. Rohoziński, J. Srebrny, Nucl. Phys. A 648, 181 (1999)ADSCrossRefGoogle Scholar
  42. 42.
  43. 43.
    Z.P. Li, T. Nikšić, P. Ring, D. Vretenar, J.M. Yao, J. Meng, Phys. Rev. C 86, 034334 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Podolyák, P.G. Bizzeti, A.M. Bizzeti-Sona, S. Lunardi, D. Bazzacco, A. Dewald, A. Algora, G. de Angelis, M. De Poli, E. Farnea et al., Eur. Phys. J. A 8, 147 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    Z. Podolyák, P. Bizzeti, A. Bizzeti-Sona, S. Lunardi, D. Bazzacco, A. Dewald, A. Algora, G. de Angelis, E. Farnea, A. Gadea et al., Eur. Phys. J. A 17, 29 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    N.V. Zamfir, R.F. Casten, Phys. Lett. B 260, 265 (1991)ADSCrossRefGoogle Scholar
  47. 47.
    E.A. McCutchan, D. Bonatsos, N.V. Zamfir, R.F. Casten, Phys. Rev. C 76, 024306 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    P. Garrett, M. Kadi, C. McGrath, V. Sorokin, M. Li, M. Yeh, S. Yates, Phys. Lett. B 400, 250 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    P.E. Garrett, J. Phys. G 27, R1 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    L. Próchniak, P. Quentin, D. Samsoen, J. Libert, Nucl. Phys. A 730, 59 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    S. Piłat, K. Pomorski, Nucl. Phys. A 554, 413 (1993)ADSCrossRefGoogle Scholar
  52. 52.
    A. Couture, R.F. Casten, R.B. Cakirli, Phys. Rev. C 91, 014312 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (Benjamin, New York, 1975)Google Scholar
  54. 54.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, 1980)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  2. 2.State Key Laboratory of Nuclear Physics and Technology, School of PhysicsPeking UniversityBeijingChina
  3. 3.Physik-DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations