Advertisement

Universal freezeout condition for charged hadrons in a hybrid approach

  • O. S. K. Chaturvedi
  • P. K. Srivastava
  • Arpit Singh
  • B. K. Singh
Regular Article - Theoretical Physics
  • 47 Downloads

Abstract.

Hadronic freezeout during the evolution of the medium created in heavy-ion collisions is an important phenomenon. It is quite useful to find a universal freezeout condition for each and every nuclear collision. In this article, we have constructed a hybrid model to calculate the ratio of transverse energy to total mean multiplicity \( E_{T}/N_{ch}\) , since this ratio can possibly act as a freezeout condition in heavy-ion collision experiments. Present hybrid model blends two approaches: Tsallis statistics and wounded quark approach. Recently, Tsallis statistics has been reliably used to obtain the transverse momentum distribution of charged hadrons produced in relativistic ion collisions. On the other side it has been shown that the pseudorapidity distribution of charged hadrons can be calculated satisfactorily using the wounded quark model (WQM). We have used this hybrid model to calculate the transverse energy density distributions \( \mathrm{d} E_{T}/\mathrm{d} \eta\) at midrapidity using charged particle pseudorapidity distributions, \( \mathrm{d} N_{ch}/\mathrm{d}\eta\) and mean transverse momentum \( \langle p_{T} \rangle\) in various types of nuclear collisions. We found that the present hybrid model satisfactorily explains the experimental data while other models fail to reproduce the data at central and at peripheral collisions simultaneously. Finally, the ratio of transverse energy to total mean multiplicity, \( E_{T}/N_{ch}\) , has been computed within the hybrid model and compared with the available experimental data at RHIC and LHC energies. We observed no explicit dependence of \( E_{T}/N_{ch}\) on energy as well as centrality and thus it can definitely act as a freezeout criterion.

References

  1. 1.
    C.P. Singh, Phys. Rep. 236, 147 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    C.P. Singh, Int. J. Mod. Phys. A 7, 7185 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    E.M. Levin, M.G. Ryskin, Phys. Rep. 189, 267 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    J. Cleymans, R. Sahoo, D.P. Mahapatra, D.K. Srivastava, S. Wheaton, Phys. Lett. B 660, 172 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Sahoo, A.N. Mishra, Int. J. Mod. Phys. E 23, 1450024 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    R. Sahoo, A.N. Mishra, N.K. Behera, B.K. Nandi, Adv. High Energy Phys. 2015, 612390 (2015)CrossRefGoogle Scholar
  9. 9.
    S.K. Tiwari, R. Sahoo, arXiv:hep-ph/1701.03323Google Scholar
  10. 10.
    STAR Collaboration (J. Adams et al.), Phys. Rev. C 70, 054907 (2004)CrossRefGoogle Scholar
  11. 11.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 94, 034903 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 71, 034908 (2005)CrossRefGoogle Scholar
  13. 13.
    D. Prorok, Eur. Phys. J. A 24, 93 (2005)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 48, 161 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Rybczynski, Z. Wlodarczyk, Eur. Phys. J. C 74, 2785 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    F.H. Liu, Y.Q. Gao, B.C. Li, Eur. Phys. J. A 50, 123 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M.D. Azmi, J. Cleymans, Acta Phys. Pol. B Proc. Suppl. 7, 9 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Rybczyński, G. Wilk, Z. Włodarczyk, EPJ Web of Conferences 90, 01002 (2015)CrossRefGoogle Scholar
  21. 21.
    P.K. Khandai, P. Sett, P. Shukla, V. Singh, J. Phys. G 41, 25105 (2014)CrossRefGoogle Scholar
  22. 22.
    M.L. Miller et al., Annu. Rev. Nucl. Part. Sci. 57, 205 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    C.P. Singh, M. Shyam, S.K. Tuli, Phys. Rev. C 40, 1716 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    M. Shyam, C.P. Singh, S.K. Tuli, Phys. Lett. B 164, 189 (1985)ADSCrossRefGoogle Scholar
  25. 25.
    C.P. Singh, M. Shyam, Phys. Lett. B 171, 125 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    W.-T. Deng, X.-N. Wang, R. Xu, Phys. Rev. C 83, 014915 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    E. Levin, A.H. Rezaeian, Phys. Rev. D 82, 054003 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. Lett. 94, 022002 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 70, 533 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    A. Kumar, P.K. Srivastava, B.K. Singh, C.P. Singh, Adv. High Energy Phys. 2013, 352180 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Kumar, B.K. Singh, P.K. Srivastava, C.P. Singh, Eur. Phys. J. Plus 128, 45 (2013)CrossRefGoogle Scholar
  32. 32.
    O.S.K. Chaturvedi, P.K. Srivastava, A. Kumar, B.K. Singh, Eur. Phys. J. Plus 131, 438 (2016)CrossRefGoogle Scholar
  33. 33.
    O.S.K. Chaturvedi, P.K. Srivastava, A. Kumar, B.K. Singh, Eur. Phys. J. Plus 132, 430 (2017)CrossRefGoogle Scholar
  34. 34.
    P. Bozek, W. Broniowski, Phys. Rev. C 85, 044910 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    P. Bozek, W. Broniowski, M. Rybczynski, Phys. Rev. C 94, 014902 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    A. Bialas, J. Phys. G 35, 044053 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    C. Loizides, Phys. Rev. C 94, 024914 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    M. Barej, A. Bzdak, P. Gutowski, arXiv:hep-ph/1712.02618Google Scholar
  39. 39.
    P. Bozek, W. Broniowski, Phys. Rev. C 96, 014904 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    H. Zheng, Lilin Zhu, A. Bonasera, arXiv:1506.03156Google Scholar
  41. 41.
    B. De, Eur. Phys. J. A 50, 138 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    S.K. Tiwari, P.K. Srivastava, C.P. Singh, Phys. Rev. C 85, 014908 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    S. Chatterjee, D. Mishra, B. Mohanty, S. Samanta, Phys. Rev. C 96, 054907 (2017)CrossRefGoogle Scholar
  45. 45.
    S. Chatterjee, A.K. Dash, B. Mohanty, J. Phys. G 44, 105106 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    J. Cleymans, R. Sahoo, D.P. Mahapatra, D.K. Srivastava, S. Wheaton, J. Phys. G 35, 104147 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    B.C. Li, G.X. Zhang, Y.Y. Guo, Adv. High Energy Phys. 2015, 684950 (2015)Google Scholar
  49. 49.
    STAR Collaboration (J. Adams et al.), Phys. Lett. B 637, 161 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    M.D. Azmi, J. Cleymans, J. Phys. G 41, 065001 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    B.C. Li, Y.Z. Wang, F.H. Liu, Phys. Lett. B 725, 352 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    M. Rybczyński, Z. Włodarczyk, Eur. Phys. J. C 74, 2785 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    C.Y. Wong, G. Wilk, Phys. Rev. D 87, 114007 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    C.Y. Wong, G. Wilk, Acta Phys. Pol. B 43, 2047 (2012)CrossRefGoogle Scholar
  56. 56.
    C.Y. Wong, G. Wilk, L.J.L. Cirto, C. Tsallis, arXiv:1505.02022Google Scholar
  57. 57.
    F.H. Liu, Y.Q. Gao, T. Tian, B.C. Li, Adv. High Energy Phys. 2014, 725739 (2014)Google Scholar
  58. 58.
    A. Ohsawa, E.H. Shibuya, M. Tamada, J. Phys. G 37, 075003 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Thomas A. Trainor, arXiv:hep-ph/1210.5217Google Scholar
  60. 60.
    A. Bialas, W. Czyz, L. Lesniak, Phys. Rev. D 25, 9 (1992)Google Scholar
  61. 61.
    V.V. Anisovich, M.N. Kobrinskii, J. Nyiri, Yu.M. Shabelskii, Sov. Phys. Usp. 27, 12 (1984)CrossRefGoogle Scholar
  62. 62.
    H.J. Lipkin, Phys. Lett. B 116, 175 (1982)ADSCrossRefGoogle Scholar
  63. 63.
    S. Fernbach, R. Serber, T.B. Taylor, Phys. Rev. 75, 1352 (1949)ADSCrossRefGoogle Scholar
  64. 64.
    T.F. Hoang, B. Cork, H.J. Crawford, Z. Phys. C 29, 611 (1985)ADSCrossRefGoogle Scholar
  65. 65.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  66. 66.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    STAR Collaboration (J. Adam et al.), Phys. Rev. C 93, 034913 (2016)ADSCrossRefGoogle Scholar
  68. 68.
    ALICE Collaboration (J. Adam et al.), Phys. Lett. B 760, 720 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 88, 024906 (2013)CrossRefGoogle Scholar
  70. 70.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 81, 054903 (2010)CrossRefGoogle Scholar
  71. 71.
    STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B. 655, 104 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    Z.-W. Lin, S. Pal, C. Ko, B.-A. Li, B. Zhang, Phys. Rev. C 64, 011902 (2001)ADSCrossRefGoogle Scholar
  73. 73.
    I. Lokhtin, A. Snigirev, Eur. Phys. J. C 45, 211 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    J.L. Albacete, A. Dumitru, H. Fujji, Y. Nara, Nucl. Phys. A 897, 1 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    M. Petrovici, I. Berceanu, A. Pop, M. Tarzila, C. Andrei, Phys. Rev. C 96, 014908 (2017)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • O. S. K. Chaturvedi
    • 1
  • P. K. Srivastava
    • 2
  • Arpit Singh
    • 1
  • B. K. Singh
    • 1
  1. 1.Department of PhysicsInstitute of Science, Banaras Hindu UniversityVaranasiIndia
  2. 2.Department of PhysicsIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations