Advertisement

Low energy constituent quark and pion effective couplings in a weak external magnetic field

  • Fábio L. Braghin
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract.

An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

References

  1. 1.
    J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    S. Scherer, Eur. Phys. J. A 28, 59 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    S. Scherer, Prog. Part. Nucl. Phys. 64, 1 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J. Bijnens, G. Ecker, Annu. Rev. Nucl. Part. Sci. 64, 149 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    S. Weinberg, Physica A 96, 327 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    Yu.A. Simonov, Phys. Rev. D 65, 094018 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Osipov, B. Hiller, A.H. Blin, Eur. Phys. J. A 49, 14 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D. Ebert, H. Reinhardt, M.K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    C.D. Roberts, R.T. Cahill, J. Praschifka, Ann. Phys. 188, 20 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    B. Holdom, Phys. Rev. D 45, 2534 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Q. Wang, Yu-P. Kuang, X-Lei Wang, M. Xiao, Phys. Rev. D 61, 054011 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    K. Ren, H.-F. Fu, Q. Wang, Phys. Rev. D 95, 074012 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 1 (1994)CrossRefGoogle Scholar
  16. 16.
    F.L. Braghin, Eur. Phys. J. A 52, 134 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    E. de Rafael, Phys. Lett. B 703, 60 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Lavelle, D. McMullan, Phys. Rep. 279, 1 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    A.W. Thomas, Nucl. Phys. B Proc. Suppl. 119, 50 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    R.D. Young, D.B. Leinweber, A.W. Thomas, Prog. Part. Nucl. Phys. 50, 399 (2003) and references thereinADSCrossRefGoogle Scholar
  21. 21.
    S. Weinberg, The Quantum Theory of Fields, Vol. II (Cambridge University Press, 1996)Google Scholar
  22. 22.
    S.J. Brodsky, R. Shrock, Phys. Lett. B 666, 95 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Brodsky, R. Shrock, arXiv:0803.2541Google Scholar
  24. 24.
    S.J. Brodsky, R. Shrock, Proc. Natl. Acad. Sci. U.S.A. 108, 45 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Brodsky, R. Shrock, arXiv:0803.2554Google Scholar
  26. 26.
    H. Reinhardt, H. Weigel, Phys. Rev. D 85, 074029 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    A. Manohar, G. Georgi, Nucl. Phys. B 233, 232 (1984)CrossRefGoogle Scholar
  28. 28.
    S. Weinberg, Phys. Rev. Lett. 105, 261601 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J.O. Andersen, W.R. Naylor, A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016) arXiv:1411.7176ADSCrossRefGoogle Scholar
  31. 31.
    V.A. Miransky, I.A. Shovkovy, Phys. Rep. 576, 1 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    V.A. Miransky, I.A. Shovkovy, Phys. Rev. D 66, 045006 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012) arXiv:1206.4205ADSCrossRefGoogle Scholar
  35. 35.
    K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 110, 031601 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    F. Bruckmann, G. Endrodi, T.G. Kovacs, J. High Energy Phys. 04, 112 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    B. Chatterjee, H. Mishra, A. Mishra, Phys. Rev. D 91, 034031 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008) arXiv:0808.3382 [hep-ph]ADSCrossRefGoogle Scholar
  40. 40.
    D.E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    D.E. Kharzeev, Annu. Rev. Nucl. Part. Sci. 65, 193 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    E.V. Gorbar, Phys. Lett. B 695, 354 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, X. Wang, Phys. Rev. D 88, 025043 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    L. Xia, Phys. Rev. D 90, 085011 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    J. Chao, P. Chu, M. Huang, Phys. Rev. D 88, 054009 (2013) arXiv:1305.1100 [hep-ph]ADSCrossRefGoogle Scholar
  46. 46.
    L. Yu, H. Liu, M. Huang, arXiv:1404.6969 [hep-ph]Google Scholar
  47. 47.
    E.J. Ferrer, V. de la Incera, A. Sanchez, Phys. Rev. Lett. 107, 041602 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    E.J. Ferrer, V. de la Incera, X.J. Wen, Phys. Rev. D 91, 054006 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    E.J. Ferrer et al., Rev. D 89, 085034 (2014)CrossRefGoogle Scholar
  50. 50.
    R.L.S. Farias, K.P. Gomes, G. Krein, M.B. Pinto, Phys. Rev. C 90, 025203 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    A. Ayala,, arXiv:1510.09134 [hep-ph]Google Scholar
  52. 52.
    C.-F. Li, L. Yang, X.J. Wen, G.X. Peng, Phys. Rev. D 93, 054005 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    M.A. Andreichikov, V.D. Orlovsky, Y.A. Simonov, Phys. Rev. Lett. 110, 162002 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    F.L. Braghin, Phys. Rev. D 94, 074030 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    F.L. Braghin, Phys. Rev. D 97, 014022 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B 742, 183 (2015) and references thereinADSCrossRefGoogle Scholar
  57. 57.
    K.-I. Kondo, Phys. Rev. D 57, 7467 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    J.M. Cornwall, Phys. Rev. D 83, 076001 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    P. Tandy, Prog. Part. Nucl. Phys. 39, 117 (1997)ADSCrossRefGoogle Scholar
  61. 61.
    K. Higashijima, Phys. Rev. D 29, 1228 (1984)ADSCrossRefGoogle Scholar
  62. 62.
    K.I. Aoki et al., Prog. Theor. Phys. 84, 683 (1990)ADSCrossRefGoogle Scholar
  63. 63.
    A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 84, 085026 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)ADSCrossRefGoogle Scholar
  65. 65.
    M.L. Goldberger, S. Treiman, Phys. Rev. 111, 354 (1966)ADSCrossRefGoogle Scholar
  66. 66.
    D. Barquilla-Cano, A.J. Buchmann, E. Hernández, Nucl. Phys. A 714, 611 (2003) arXiv:[nucl-th]/0204067ADSCrossRefGoogle Scholar
  67. 67.
    D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986)ADSCrossRefGoogle Scholar
  68. 68.
    S. Weinberg, Phys. Rev. 166, 1568 (1968)ADSCrossRefGoogle Scholar
  69. 69.
    L.F. Abbott, Acta Phys. Pol. B 13, 33 (1982)Google Scholar
  70. 70.
    M.O.C. Gomes, Teoria Quântica de Campos (EDUSP, São Paulo, Brazil, 2002)Google Scholar
  71. 71.
    F.L. Braghin, Phys. Rev. D 64, 125001 (2001)ADSCrossRefGoogle Scholar
  72. 72.
    H. Kleinert, in Erice Summer Institute 1976, Understanding the Fundamental Constituents of Matter, edited by A. Zichichi (Plenum Press, New York, 1978) p. 289Google Scholar
  73. 73.
    G. ’t Hooft, Nucl. Phys. B 72, 461 (1974)ADSCrossRefGoogle Scholar
  74. 74.
    W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936) translated into English: arXiv:[physics]/0605038ADSCrossRefGoogle Scholar
  75. 75.
    G.S. Bali et al., JHEP 02, 44 (2012) arXiv:1111.4956ADSCrossRefGoogle Scholar
  76. 76.
    G. Endrodi, JHEP 04, 023 (2013) arXiv:1301.1307ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    J. Schwinger, Phys. Rev. 82, 664 (1951)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    J. Schwinger, Phys. Rev. 93, 615 (1953)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    F.L. Braghin, Phys. Lett. B 761, 424 (2016)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    E. Witten, Nucl. Phys. B 160, 57 (1979)ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    S. Weinberg, Phys. Rev. Lett. 18, 188 (1967)ADSCrossRefGoogle Scholar
  82. 82.
    J. Greensite, An Introduction to the Confinement Problem (Springer, Heildelberg, 2011)Google Scholar
  83. 83.
    P. Watson, H. Reinhardt, Phys. Rev. D 89, 045008 (2014)ADSCrossRefGoogle Scholar
  84. 84.
    G.S. Bali et al., J. High Energy Phys. 04, 130 (2013)ADSCrossRefGoogle Scholar
  85. 85.
    C. Itzikson, J.-B. Zuber, Quantum Field Theory (McGraw Hill, 1985)Google Scholar
  86. 86.
    J.O. Andersen, JHEP 10, 005 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    A. Paulo jr., F.L. Braghin, Phys. Rev. D 90, 014049 (2014)ADSCrossRefGoogle Scholar
  88. 88.
    M. Benayoun, H.B. O’Connell, A.G. Williams, Phys. Rev. D 59, 074020 (1999)ADSCrossRefGoogle Scholar
  89. 89.
    G. Kalbermann, Phys. Rev. D 33, 1987 (1986)ADSCrossRefGoogle Scholar
  90. 90.
    T.-K. Chyi et al., Phys. Rev. D 62, 105014 (2000)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de FísicaFed. Univ. of GoiasGoiâniaBrazil

Personalised recommendations