Advertisement

Universal scaling of strange particle pT spectra in pp collisions

  • Liwen Yang
  • Yanyun Wang
  • Wenhui Hao
  • Na Liu
  • Xiaoling Du
  • Wenchao Zhang
Regular Article - Theoretical Physics

Abstract.

As a complementary study to that performed on the transverse momentum (\(p_{\mathrm{T}}\)) spectra of charged pions, kaons and protons in proton-proton (pp) collisions at LHC energies 0.9, 2.76 and 7TeV, we present a scaling behaviour in the \( p_{\mathrm{T}}\) spectra of strange particles (\(K_{S}^{0}\), \(\Lambda\), \(\Xi\) and \(\phi\)) at these three energies. This scaling behaviour is exhibited when the spectra are expressed in a suitable scaling variable \(z=p_{\mathrm{T}}/K\), where the scaling parameter K is determined by the quality factor method and increases with the center of mass energy (\(\sqrt{s}\)). The rates at which K increases with \( \ln \sqrt{s}\) for these strange particles are found to be identical within errors. In the framework of the colour string percolation model, we argue that these strange particles are produced through the decay of clusters that are formed by the colour strings overlapping. We observe that the strange mesons and baryons are produced from clusters with different size distributions, while the strange mesons (baryons) \( K_{S}^{0}\) and \( \phi\) (\( \Lambda\) and \( \Xi\)) originate from clusters with the same size distributions. The cluster’s size distributions for strange mesons are more dispersed than those for strange baryons. The scaling behaviour of the \( p_{\mathrm{T}}\) spectra for these strange particles can be explained by the colour string percolation model in a quantitative way.

References

  1. 1.
    R.C. Hwa, C.B. Yang, Phys. Rev. Lett. 90, 212301 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    W.C. Zhang, Y. Zeng, W.X. Nie, L.L. Zhu, C.B. Yang, Phys. Rev. C 76, 044910 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    W.C. Zhang, C.B. Yang, J. Phys. G: Nucl. Part. Phys. 41, 105006 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    W.C. Zhang, J. Phys. G: Nucl. Part. Phys. 43, 015003 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    CMS Collaboration (V. Khachatryan et al.), J. High Energy Phys. 05, 064 (2011)Google Scholar
  6. 6.
    L.D. Hanratty, CERN-THESIS-2014-103 (2014)Google Scholar
  7. 7.
    D. Colella (for the ALICE Collaboration), J. Phys.: Conf. Ser. 509, 012090 (2014)Google Scholar
  8. 8.
    ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 71, 1594 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 95, 064606 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    ALICE Collaboration (B. Abelev et al.), Eur. Phys. J. C 72, 2183 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    F. Gelis et al., Phys. Lett. B 647, 376 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    G. Beuf et al., Phys. Rev. D 78, 074004 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 736, 196 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    M. Rybczynski, Z. Wlodarczyk, G. Wilk, J. Phys. G: Nucl. Part. Phys. 39, 095004 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    L. Cunqueiro et al., Eur. Phys. J. C 53, 585 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    J. Dias de Deus et al., Eur. Phys. J. C 41, 229 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    J. Schwinger, Phys. Rev. 82, 664 (1951)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Dias de Deus et al., Phys. Lett. B 601, 125 (2004)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liwen Yang
    • 1
  • Yanyun Wang
    • 1
  • Wenhui Hao
    • 1
  • Na Liu
    • 1
  • Xiaoling Du
    • 1
  • Wenchao Zhang
    • 1
  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations