Gravitational collapse in a cylindrical symmetric vacuum space-time and the naked singularity
Regular Article - Theoretical Physics
First Online:
Received:
Accepted:
- 23 Downloads
Abstract.
We construct a cylindrical symmetry vacuum solution of the Einstein field equations, regular everywhere except on the symmetry axis where it possesses a naked curvature singularity. The geodesics motion of free test particles near the singularity, geodesic expansion to understand the nature of singularity, and the C-energy of the vacuum metric, will be discussed. Finally, the physical interpretation of this solution, based on the study of the equation of the geodesics deviation, will be presented.
References
- 1.D. Christodoulou, Commun. Math. Phys. 93, 171 (1984)ADSCrossRefGoogle Scholar
- 2.A. Papapetrou, in A Random Walk in Relativity and Gravitation, edited by N. Dadhich (New York, Wiley, 1985)Google Scholar
- 3.P.S. Joshi, Gravitational Collapse and Spacetime Singularities (Cambridge University Press, Cambridge, 2008)Google Scholar
- 4.R. Penrose, Nuovo Cimento 1, 252 (1969)Google Scholar
- 5.R. Penrose, Singularities and time-asymmetry, in General Relativity: An Einstein Centenary Survey, edited by S. Hawking (Cambridge University Press, Cambridge, 1979)Google Scholar
- 6.K.S. Thorne, in Magic without Magic: John Archibald Wheeler, edited by J.R. Klauder (Freeman and Co., San Francisco, 1972)Google Scholar
- 7.S.A. Hayward, Class. Quantum Grav. 17, 1749 (2000)ADSCrossRefGoogle Scholar
- 8.T.A. Apostolatos, K.S. Thorne, Phys. Rev. D 46, 2435 (1992)ADSMathSciNetCrossRefGoogle Scholar
- 9.F. Echeverria, Phys. Rev. D 47, 2271 (1993)ADSCrossRefGoogle Scholar
- 10.T. Chiba, Prog. Theor. Phys. 95, 321 (1996)ADSCrossRefGoogle Scholar
- 11.M.A. Melvin, Phys. Lett. 8, 65 (1964)ADSMathSciNetCrossRefGoogle Scholar
- 12.K.S. Thorne, Phys. Rev. 138, B251 (1965)ADSCrossRefGoogle Scholar
- 13.M.A. Melvin, Phys. Rev. 139, B225 (1965)ADSCrossRefGoogle Scholar
- 14.T.A. Morgan, Gen. Rel. Gravit. 4, 273 (1973)ADSCrossRefGoogle Scholar
- 15.T. Piran, Phys. Rev. Lett. 41, 1085 (1978)ADSCrossRefGoogle Scholar
- 16.H. Bondi, Proc. R. Soc. London A 427, 259 (1990)ADSMathSciNetCrossRefGoogle Scholar
- 17.P.S. Letelier, A. Wang, Phys. Rev. D 49, 5105 (1994)ADSMathSciNetCrossRefGoogle Scholar
- 18.J.M.M. Senovilla, R. Vera, Class. Quantum Grav. 17, 2843 (2000)ADSCrossRefGoogle Scholar
- 19.P.R.C.T. Periera, A. Wang, Phys. Rev. D 62, 124001 (2000)ADSCrossRefGoogle Scholar
- 20.S.M.C.V. Goncalves, S. Jhingan, Int. J. Mod. Phys. D 11, 1469 (2002)ADSCrossRefGoogle Scholar
- 21.S.M.C.V. Goncalves, Phys. Rev. D 65, 084045 (2002)ADSMathSciNetCrossRefGoogle Scholar
- 22.B.C. Nolan, Phys. Rev. D 65, 104006 (2002)ADSMathSciNetCrossRefGoogle Scholar
- 23.A. Wang, Phys. Rev. D 68, 064006 (2003)ADSMathSciNetCrossRefGoogle Scholar
- 24.A. Wang, Phys. Rev. D 72, 108501 (2005)ADSCrossRefGoogle Scholar
- 25.K. Nakao, Y. Morisawa, Class Quantum Grav. 21, 2101 (2004)ADSCrossRefGoogle Scholar
- 26.K. Nakao, Y. Morisawa, Prog. Theor. Phys. 113, 73 (2005)ADSCrossRefGoogle Scholar
- 27.K. Nakao, Y. Morisawa, Phys. Rev. D 71, 124007 (2005)ADSMathSciNetCrossRefGoogle Scholar
- 28.Z. Ahmad, B. Imtiaz, Braz. J. Phys. 43, 57 (2013)ADSCrossRefGoogle Scholar
- 29.D. Sarma, F. Ahmed, M. Patgiri, Adv. High Energy Phys. 2016, 2546186 (2016)CrossRefGoogle Scholar
- 30.F. Ahmed, Adv. High Energy Phys. 2017, 7943649 (2017)Google Scholar
- 31.F. Ahmed, Adv. High Energy Phys. 2017, 3587018 (2017)Google Scholar
- 32.F. Ahmed, Prog. Theor. Exp. Phys. 2017, 083E03 (2017)CrossRefGoogle Scholar
- 33.A. Harvey, Class. Quantum Grav. 7, 715 (1990)ADSMathSciNetCrossRefGoogle Scholar
- 34.V.V. Narlikar, K.R. Karmakar, Proc. Indian. Acad. Sci. A 29, 91 (1948)Google Scholar
- 35.T.P. Singh, Phys. Rev. D 58, 024004 (1998)ADSMathSciNetCrossRefGoogle Scholar
- 36.F.J. Tipler, Phys. Lett. A 64, 8 (1977)ADSMathSciNetCrossRefGoogle Scholar
- 37.C.J.S. Clarke, A. Krolak, J. Geom. Phys. 2, 127 (1986)ADSCrossRefGoogle Scholar
- 38.A. Krolak, J. Math. Phys. 28, 138 (1987)ADSMathSciNetCrossRefGoogle Scholar
- 39.H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions to Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)Google Scholar
Copyright information
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018