Advertisement

A high-efficiency gas target setup for underground experiments, and redetermination of the branching ratio of the 189.5 keV 22Ne(p,\(\gamma\))23Na resonance

  • LUNA Collaboration
  • F. Ferraro
  • M. P. Takács
  • D. Piatti
  • V. Mossa
  • M. Aliotta
  • D. Bemmerer
  • A. Best
  • A. Boeltzig
  • C. Broggini
  • C. G. Bruno
  • A. Caciolli
  • F. Cavanna
  • T. Chillery
  • G. F. Ciani
  • P. Corvisiero
  • L. Csedreki
  • T. Davinson
  • R. Depalo
  • G. D’Erasmo
  • A. Di Leva
  • Z. Elekes
  • E. M. Fiore
  • A. Formicola
  • Zs. Fülöp
  • G. Gervino
  • A. Guglielmetti
  • C. Gustavino
  • Gy. Gyürky
  • G. Imbriani
  • M. Junker
  • I. Kochanek
  • M. Lugaro
  • L. E. Marcucci
  • P. Marigo
  • R. Menegazzo
  • F. R. Pantaleo
  • V. Paticchio
  • R. Perrino
  • P. Prati
  • L. Schiavulli
  • K. Stöckel
  • O. Straniero
  • T. Szücs
  • D. Trezzi
  • S. Zavatarelli
Regular Article - Experimental Physics

Abstract.

The experimental study of nuclear reactions of astrophysical interest is greatly facilitated by a low-background, high-luminosity setup. The Laboratory for Underground Nuclear Astrophysics (LUNA) 400kV accelerator offers ultra-low cosmic-ray induced background due to its location deep underground in the Gran Sasso National Laboratory (INFN-LNGS), Italy, and high intensity, 250-500μA, proton and \(\alpha\) ion beams. In order to fully exploit these features, a high-purity, recirculating gas target system for isotopically enriched gases is coupled to a high-efficiency, six-fold optically segmented bismuth germanate (BGO) \(\gamma\)-ray detector. The beam intensity is measured with a beam calorimeter with constant temperature gradient. Pressure and temperature measurements have been carried out at several positions along the beam path, and the resultant gas density profile has been determined. Calibrated \(\gamma\)-intensity standards and the well-known \(E_{p} = 278\) keV 14N(p,\(\gamma\))15O resonance were used to determine the \(\gamma\)-ray detection efficiency and to validate the simulation of the target and detector setup. As an example, the recently measured resonance at \(E_{p} = 189.5\) keV in the 22Ne(p,\(\gamma\))23Na reaction has been investigated with high statistics, and the \(\gamma\)-decay branching ratios of the resonance have been determined.

References

  1. 1.
    C. Iliadis, Nuclear Physics of Stars, 2nd edition (Wiley-VCH, Weinheim, 2015)Google Scholar
  2. 2.
    R. Gratton, C. Sneden, E. Carretta, Annu. Rev. Astron. Astrophys. 42, 385 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    R. Longland, C. Iliadis, J.M. Cesaratto, A.E. Champagne, S. Daigle, J.R. Newton, R. Fitzgerald, Phys. Rev. C 81, 055804 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    R. Depalo, F. Cavanna, F. Ferraro, A. Slemer, T. Al-Abdullah, S. Akhmadaliev, M. Anders, D. Bemmerer, Z. Elekes, G. Mattei et al., Phys. Rev. C 92, 045807 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs et al., Nucl. Phys. A 656, 3 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    C. Iliadis, R. Longland, A.E. Champagne, A. Coc, R. Fitzgerald, Nucl. Phys. A 841, 31 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    F. Cavanna, R. Depalo, M. Aliotta, M. Anders, D. Bemmerer, A. Best, A. Boeltzig, C. Broggini, C.G. Bruno, A. Caciolli et al., Phys. Rev. Lett. 115, 252501 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    LUNA Collaboration (R. Depalo, F. Cavanna, M. Aliotta, M. Anders, D. Bemmerer, A. Best, A. Boeltzig, C. Broggini, C.G. Bruno, A. Caciolli et al.), Phys. Rev. C 94, 055804 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    A. Slemer, P. Marigo, D. Piatti, M. Aliotta, D. Bemmerer, A. Best, A. Boeltzig, A. Bressan, C. Broggini, C.G. Bruno et al., Mon. Not. R. Astron. Soc. 465, 4817 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    K.J. Kelly, A.E. Champagne, L.N. Downen, J.R. Dermigny, S. Hunt, C. Iliadis, A.L. Cooper, Phys. Rev. C 95, 015806 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    F. Cavanna, R. Depalo, M.L. Menzel, M. Aliotta, M. Anders, D. Bemmerer, C. Broggini, C.G. Bruno, A. Caciolli, P. Corvisiero et al., Eur. Phys. J. A 50, 179 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    A. Formicola, G. Imbriani, M. Junker, D. Bemmerer, R. Bonetti, C. Broggini, C. Casella, P. Corvisiero, H. Costantini, G. Gervino et al., Nucl. Instrum. Methods A 507, 609 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    H. Costantini, A. Formicola, G. Imbriani, M. Junker, C. Rolfs, F. Strieder, Rep. Prog. Phys. 72, 086301 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    C. Broggini, D. Bemmerer, A. Guglielmetti, R. Menegazzo, Annu. Rev. Nucl. Part. Sci. 60, 53 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C. Broggini, D. Bemmerer, A. Caciolli, D. Trezzi, Prog. Part. Nucl. Phys. 98, 55 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods B 268, 1818 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A. Caciolli, D.A. Scott, A. Di Leva, A. Formicola, M. Aliotta, M. Anders, A. Bellini, D. Bemmerer, C. Broggini, M. Campeggio et al., Eur. Phys. J. A 48, 144 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    C. Bordeanu, G. Gyürky, Z. Halász, T. Szücs, G.G. Kiss, Z. Elekes, J. Farkas, Z. Fülöp, E. Somorjai, Nucl. Phys. A 908, 1 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    J. Görres, K. Kettner, H. Kräwinkel, C. Rolfs, Nucl. Instrum. Methods 177, 295 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    M. Marta, F. Confortola, D. Bemmerer, C. Boiano, R. Bonetti, C. Broggini, M. Casanova, P. Corvisiero, H. Costantini, Z. Elekes et al., Nucl. Instrum. Methods A 569, 727 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J. Osborne, C. Barnes, R. Kavanagh, R. Kremer, G. Mathews, J. Zyskind, P. Parker, A. Howard, Nucl. Phys. A 419, 115 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    A. Vlieks, M. Hilgemeier, C. Rolfs, Nucl. Instrum. Methods Phys. Res. 213, 291 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    C. Casella, H. Costantini, A. Lemut, B. Limata, D. Bemmerer, R. Bonetti, C. Broggini, L. Campajola, P. Cocconi, P. Corvisiero et al., Nucl. Instrum. Methods A 489, 160 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    F. Ferraro, PhD Thesis, Università degli Studi di Genova (2017). Google Scholar
  25. 25.
    A. Caciolli, C. Mazzocchi, V. Capogrosso, D. Bemmerer, C. Broggini, P. Corvisiero, H. Costantini, Z. Elekes, A. Formicola, Z. Fülöp et al., Astron. Astrophys. 533, A66 (2011)CrossRefGoogle Scholar
  26. 26.
    A. Boeltzig et al., J. Phys. G 45, 025203 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    D. Bemmerer, F. Confortola, A. Lemut, R. Bonetti, C. Broggini, P. Corvisiero, H. Costantini, J. Cruz, A. Formicola, Z. Fülöp et al., Eur. Phys. J. A 24, 313 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    A. Lemut, D. Bemmerer, F. Confortola, R. Bonetti, C. Broggini, P. Corvisiero, H. Costantini, J. Cruz, A. Formicola, Z. Fülöp et al., Phys. Lett. B 634, 483 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    D. Bemmerer, F. Confortola, A. Lemut, R. Bonetti, C. Broggini, P. Corvisiero, H. Costantini, J. Cruz, A. Formicola, Z. Fülöp et al., Nucl. Phys. A 779, 297 (2006)CrossRefGoogle Scholar
  31. 31.
    D. Bemmerer, A. Caciolli, R. Bonetti, C. Broggini, F. Confortola, P. Corvisiero, H. Costantini, Z. Elekes, A. Formicola, Z. Fülöp et al., J. Phys. G 36, 045202 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    M. Takács, PhD Thesis, Technische Universität Dresden and Helmholtz Zentrum Dresden Rossendorf (2017)Google Scholar
  33. 33.
    D. Jenkins, M. Bouhelal, S. Courtin, M. Freer, B. Fulton et al., Phys. Rev. C 87, 064301 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    R. Depalo, PhD Thesis, Università degli Studi di Padova (2015)Google Scholar
  35. 35.
    F. Cavanna, PhD Thesis, Università degli Studi di Genova (2015)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • LUNA Collaboration
  • F. Ferraro
    • 1
    • 2
  • M. P. Takács
    • 3
    • 4
  • D. Piatti
    • 5
    • 6
  • V. Mossa
    • 7
    • 8
  • M. Aliotta
    • 9
  • D. Bemmerer
    • 3
  • A. Best
    • 10
  • A. Boeltzig
    • 11
  • C. Broggini
    • 5
  • C. G. Bruno
    • 9
  • A. Caciolli
    • 5
    • 6
  • F. Cavanna
    • 1
    • 2
  • T. Chillery
    • 9
  • G. F. Ciani
    • 11
    • 12
  • P. Corvisiero
    • 1
    • 2
  • L. Csedreki
    • 12
  • T. Davinson
    • 9
  • R. Depalo
    • 5
    • 6
  • G. D’Erasmo
    • 7
    • 8
  • A. Di Leva
    • 10
  • Z. Elekes
    • 13
  • E. M. Fiore
    • 7
    • 8
  • A. Formicola
    • 12
  • Zs. Fülöp
    • 13
  • G. Gervino
    • 14
  • A. Guglielmetti
    • 15
  • C. Gustavino
    • 16
  • Gy. Gyürky
    • 13
  • G. Imbriani
    • 10
  • M. Junker
    • 12
  • I. Kochanek
    • 12
  • M. Lugaro
    • 17
  • L. E. Marcucci
    • 18
  • P. Marigo
    • 5
    • 6
  • R. Menegazzo
    • 5
  • F. R. Pantaleo
    • 7
    • 8
  • V. Paticchio
    • 8
  • R. Perrino
    • 8
  • P. Prati
    • 1
    • 2
  • L. Schiavulli
    • 7
    • 8
  • K. Stöckel
    • 3
    • 4
  • O. Straniero
    • 19
  • T. Szücs
    • 13
  • D. Trezzi
    • 15
  • S. Zavatarelli
    • 2
  1. 1.Dipartimento di FisicaUniversità degli Studi di GenovaGenovaItaly
  2. 2.INFN, Sezione di GenovaGenovaItaly
  3. 3.Helmholtz-Zentrum Dresden-Rossendorf (HZDR)DresdenGermany
  4. 4.Technische Universität DresdenDresdenGermany
  5. 5.INFN, Sezione di PadovaPadovaItaly
  6. 6.Dipartimento di Fisica e AstronomiaUniversità di PadovaPadovaItaly
  7. 7.Dipartimento Interateneo di Fisica “Michelangelo Merlin”Università degli Studi di BariBariItaly
  8. 8.INFN, Sezione di BariBariItaly
  9. 9.SUPA, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
  10. 10.Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II and INFN, Sezione di NapoliNapoliItaly
  11. 11.Gran Sasso Science InstituteL’AquilaItaly
  12. 12.INFN, Laboratori Nazionali del Gran SassoAssergiItaly
  13. 13.Institute of Nuclear Research (MTA Atomki)DebrecenHungary
  14. 14.Dipartimento di Fisica, Università di Torino, and INFN Sezione di TorinoTorinoItaly
  15. 15.Università degli Studi di Milano and INFN, Sezione di MilanoMilanoItaly
  16. 16.INFN, Sezione di Roma “La Sapienza”RomaItaly
  17. 17.Konkoly ObservatoryResearch Centre for Astronomy and Earth Sciences, Hungarian Academy of SciencesBudapestHungary
  18. 18.Dipartimento di Fisica “E. Fermi”, Università di Pisa, and INFN, Sezione di PisaPisaItaly
  19. 19.INAF Osservatorio Astronomico di TeramoTeramoItaly

Personalised recommendations