Skip to main content
Log in

Low-energy limit of the extended Linear Sigma Model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry \( SU(N_{f})_{L} \times SU(N_{f})_{R}\) , with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for \( N_{f}=2\) flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft, Phys. Rep. 142, 357 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  3. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  Google Scholar 

  4. H. Leutwyler, Ann. Phys. 235, 165 (1994) arXiv:hep-ph/9311274

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Scherer, Adv. Nucl. Phys. 27, 277 (2003) arXiv:hep-ph/0210398

    Google Scholar 

  6. H.W. Fearing, S. Scherer, Phys. Rev. D 53, 315 (1996) arXiv:hep-ph/9408346

    Article  ADS  Google Scholar 

  7. A. Pich, arXiv:hep-ph/9806303

  8. A.V. Manohar, Lect. Notes Phys. 479, 311 (1997) arXiv:hep-ph/9606222

    Article  ADS  Google Scholar 

  9. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

    Article  ADS  Google Scholar 

  10. M. Bando, T. Kugo, K. Yamawaki, Phys. Rep. 164, 217 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  11. E.E. Jenkins, A.V. Manohar, M.B. Wise, Phys. Rev. Lett. 75, 2272 (1995) arXiv:hep-ph/9506356

    Article  ADS  Google Scholar 

  12. B.W. Lee, Chiral Dynamics (Gordon and Breach, New York, 1972)

  13. V. Koch, Int. J. Mod. Phys. E 6, 203 (1997) arXiv:nucl-th/9706075

    Article  ADS  Google Scholar 

  14. R.D. Pisarski, arXiv:hep-ph/9503330

  15. S. Gasiorowicz, D.A. Geffen, Rev. Mod. Phys. 41, 531 (1969)

    Article  ADS  Google Scholar 

  16. P. Ko, S. Rudaz, Phys. Rev. D 50, 6877 (1994)

    Article  ADS  Google Scholar 

  17. M. Urban, M. Buballa, J. Wambach, Nucl. Phys. A 697, 338 (2002) arXiv:hep-ph/0102260

    Article  ADS  Google Scholar 

  18. D. Parganlija, F. Giacosa, Eur. Phys. J. C 77, 450 (2017) arXiv:1612.09218 [hep-ph]

    Article  ADS  Google Scholar 

  19. S. Janowski, D. Parganlija, F. Giacosa, D.H. Rischke, Phys. Rev. D 84, 054007 (2011) arXiv:1103.3238 [hep-ph]

    Article  ADS  Google Scholar 

  20. D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa, D.H. Rischke, Phys. Rev. D 87, 014011 (2013) arXiv:1208.0585 [hep-ph]

    Article  ADS  Google Scholar 

  21. S. Janowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 90, 114005 (2014) arXiv:1408.4921 [hep-ph]

    Article  ADS  Google Scholar 

  22. D. Parganlija, F. Giacosa, D.H. Rischke, Phys. Rev. D 82, 054024 (2010) arXiv:1003.4934 [hep-ph]

    Article  ADS  Google Scholar 

  23. W.I. Eshraim, F. Giacosa, D.H. Rischke, Eur. Phys. J. A 51, 112 (2015) arXiv:1405.5861 [hep-ph]

    Article  ADS  Google Scholar 

  24. S. Gallas, F. Giacosa, D.H. Rischke, Phys. Rev. D 82, 014004 (2010) arXiv:0907.5084 [hep-ph]

    Article  ADS  Google Scholar 

  25. S. Gallas, F. Giacosa, Int. J. Mod. Phys. A 29, 1450098 (2014) arXiv:1308.4817 [hep-ph]

    Article  ADS  Google Scholar 

  26. L. Olbrich, M. Zétényi, F. Giacosa, D.H. Rischke, Phys. Rev. D 93, 034021 (2016) arXiv:1511.05035 [hep-ph]

    Article  ADS  Google Scholar 

  27. S. Gallas, F. Giacosa, G. Pagliara, Nucl. Phys. A 872, 13 (2011) arXiv:1105.5003 [hep-ph]

    Article  ADS  Google Scholar 

  28. A. Heinz, F. Giacosa, D.H. Rischke, Nucl. Phys. A 933, 34 (2015) arXiv:1312.3244 [nucl-th]

    Article  ADS  Google Scholar 

  29. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985) see also the summary on “quark model” in ref. pdg

    Article  ADS  Google Scholar 

  30. G. ’t Hooft, Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

  31. E. Witten, Nucl. Phys. B 160, 57 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.R. Coleman, SLAC-PUB-2484

  33. T. Wolkanowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 93, 014002 (2016) arXiv:1508.00372 [hep-ph]

    Article  ADS  Google Scholar 

  34. T. Wolkanowski, M. Sołtysiak, F. Giacosa, Nucl. Phys. B 909, 418 (2016) arXiv:1512.01071 [hep-ph]

    Article  ADS  Google Scholar 

  35. E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007) arXiv:0708.4016 [hep-ph]

    Article  ADS  Google Scholar 

  36. C. Amsler, N.A. Tornqvist, Phys. Rep. 389, 61 (2004)

    Article  ADS  Google Scholar 

  37. R.L. Jaffe, Phys. Rev. D 15, 267 (1977)

    Article  ADS  Google Scholar 

  38. R.L. Jaffe, Phys. Rev. D 15, 281 (1977)

    Article  ADS  Google Scholar 

  39. L. Maiani, F. Piccinini, A.D. Polosa, V. Riquer, Phys. Rev. Lett. 93, 212002 (2004) arXiv:hep-ph/0407017

    Article  ADS  Google Scholar 

  40. A.H. Fariborz, R. Jora, J. Schechter, Phys. Rev. D 72, 034001 (2005) arXiv:hep-ph/0506170

    Article  ADS  Google Scholar 

  41. A.H. Fariborz, Int. J. Mod. Phys. A 19, 2095 (2004) arXiv:hep-ph/0302133

    Article  ADS  Google Scholar 

  42. M. Napsuciale, S. Rodriguez, Phys. Rev. D 70, 094043 (2004) arXiv:hep-ph/0407037

    Article  ADS  Google Scholar 

  43. F. Giacosa, Phys. Rev. D 75, 054007 (2007) arXiv:hep-ph/0611388

    Article  ADS  Google Scholar 

  44. E. van Beveren, T.A. Rijken, K. Metzger, C. Dullemond, G. Rupp, J.E. Ribeiro, Z. Phys. C 30, 615 (1986) arXiv:0710.4067 [hep-ph]

    Article  ADS  Google Scholar 

  45. E. van Beveren, D.V. Bugg, F. Kleefeld, G. Rupp, Phys. Lett. B 641, 265 (2006) arXiv:hep-ph/0606022

    Article  ADS  Google Scholar 

  46. J.R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004) arXiv:hep-ph/0309292

    Article  ADS  Google Scholar 

  47. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997) 652

    Article  ADS  Google Scholar 

  48. J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D 59, 074001 (1999) 60

    Article  ADS  Google Scholar 

  49. C. Hanhart, J.R. Pelaez, G. Rios, Phys. Rev. Lett. 100, 152001 (2008) arXiv:0801.2871 [hep-ph]

    Article  ADS  Google Scholar 

  50. J.R. Pelaez, G. Rios, Phys. Rev. D 82, 114002 (2010) arXiv:1010.6008 [hep-ph]

    Article  ADS  Google Scholar 

  51. J.R. Pelaez, Phys. Rep. 658, 1 (2016) arXiv:1510.00653 [hep-ph]

    Article  ADS  Google Scholar 

  52. F. Giacosa, Phys. Rev. D 80, 074028 (2009) arXiv:0903.4481 [hep-ph]

    Article  ADS  Google Scholar 

  53. A. Heinz, S. Struber, F. Giacosa, D.H. Rischke, Phys. Rev. D 79, 037502 (2009) arXiv:0805.1134 [hep-ph]

    Article  ADS  Google Scholar 

  54. J. Bijnens, G. Ecker, Annu. Rev. Nucl. Part. Sci. 64, 149 (2014) arXiv:1405.6488[hep-ph]

    Article  ADS  Google Scholar 

  55. NA48 Collaboration (B. Peyaud), Nucl. Phys. Proc. Suppl. 187, 29 (2009)

    Article  ADS  Google Scholar 

  56. D. Black, A.H. Fariborz, R. Jora, N.W. Park, J. Schechter, M. Naeem Shahid, Mod. Phys. Lett. A 24, 2285 (2009) arXiv:0904.2161 [hep-ph]

    Article  ADS  Google Scholar 

  57. D. Black, A.H. Fariborz, S. Moussa, S. Nasri, J. Schechter, Phys. Rev. D 64, 014031 (2001) arXiv:hep-ph/0012278

    Article  ADS  Google Scholar 

  58. Y. Chen, A. Alexandru, S.J. Dong, T. Draper, I. Horvath, F.X. Lee, K.F. Liu, N. Mathur et al., Phys. Rev. D 73, 014516 (2006) arXiv:hep-lat/0510074

    Article  ADS  Google Scholar 

  59. L.-C. Gui, Y. Chen, G. Li, C. Liu, Y.-B. Liu, J.-P. Ma, Y.-B. Yang, J.-B. Zhang, Phys. Rev. Lett. 110, 021601 (2013) arXiv:1206.0125 [hep-lat]

    Article  ADS  Google Scholar 

  60. F. Brünner, D. Parganlija, A. Rebhan, Phys. Rev. D 91, 106002 (2015) 93

    Article  ADS  Google Scholar 

  61. F. Brünner, A. Rebhan, Phys. Rev. Lett. 115, 131601 (2015) arXiv:1504.05815 [hep-ph]

    Article  ADS  Google Scholar 

  62. F. Brünner, A. Rebhan, Phys. Rev. D 92, 121902 (2015) arXiv:1510.07605 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Divotgey.

Additional information

Communicated by R. Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divotgey, F., Kovacs, P., Giacosa, F. et al. Low-energy limit of the extended Linear Sigma Model. Eur. Phys. J. A 54, 5 (2018). https://doi.org/10.1140/epja/i2018-12458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12458-9

Navigation