Correlated prompt fission data in transport simulations

  • P. Talou
  • R. Vogt
  • J. Randrup
  • M. E. Rising
  • S. A. Pozzi
  • J. Verbeke
  • M. T. Andrews
  • S. D. Clarke
  • P. Jaffke
  • M. Jandel
  • T. Kawano
  • M. J. Marcath
  • K. Meierbachtol
  • L. Nakae
  • G. Rusev
  • A. Sood
  • I. Stetcu
  • C. Walker
Review
  • 32 Downloads

Abstract.

Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and \( \gamma\)-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and \( \gamma\)-ray spectra, angular distributions of the emitted particles, n -n, n - \( \gamma\), and \( \gamma\) - \( \gamma\) correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and \( \gamma\) rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and \( \gamma\) emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the \( \gamma\)-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.

References

  1. 1.
    N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)ADSCrossRefGoogle Scholar
  2. 2.
    P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Technical Report LA-UR-15-26310, arXiv:1508.06294, Los Alamos National Laboratory (2015)Google Scholar
  3. 3.
    T. Ichikawa, A. Iwamoto, P. Möller, A.J. Sierk, Phys. Rev. C 86, 024610 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    W. Younes, D. Gogny, Phys. Rev. Lett. 107, 132501 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    D. Regnier, N. Dubray, N. Schunck, M. Verrière, Phys. Rev. C 93, 054611 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    A. Bulgac, P. Magierski, K.J. Roche, I. Stetcu, Phys. Rev. Lett. 116, 122504 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    N. Ensslin, W.C. Harker, M.S. Krick, D.G. Langner, M.M. Pockrell, J.E. Stewart, Technical Report LA-13422-M, Los Alamos National Laboratory (1998)Google Scholar
  8. 8.
    P. Talou, T. Kawano, I. Stetcu, Technical Report LA-CC-13-063, Los Alamos National Laboratory (2013)Google Scholar
  9. 9.
    J.M. Verbeke, J. Randrup, R. Vogt, Comput. Phys. Commun. 191, 178 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Verbeke, J. Randrup, R. Vogt, Comput. Phys. Commun. 222, 263 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    O. Litaize, O. Serot, L. Berge, Eur. Phys. J. A 51, 177 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    K.H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    MCNP6 Development Team, Technical Report LA-UR-13-22934, Los Alamos National Laboratory (2013)Google Scholar
  14. 14.
    S.A. Pozzi, S.D. Clarke, W. Walsh, E. Miller, J. Dolan, M. Flaska, B. Wieger, A. Enqvist, E. Padovani, J. Mattingly et al., Nucl. Instrum. Methods Phys. Res. A 694, 119 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Bohr, On the Theory of Nuclear Fission, in International Conference on the Peaceful Uses of Atomic Energy, Vol. 2 (N.Y. United Nations, Geneva, 1956) p. 151Google Scholar
  16. 16.
    T. Kawano, P. Talou, M.B. Chadwick, T. Watanabe, J. Nucl. Sci. Technol. 47, 462 (2010)CrossRefGoogle Scholar
  17. 17.
    R. Capote et al., Nucl. Data Sheets 131, 1 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    V.N. Dushin, F.J. Hambsch, V.A. Jakovlev, V.A. Kalinin, I.S. Kraev, A.B. Laptev, D.V. Nikolaev, B.F. Petrov, G.A. Petrov, V.I. Petrova et al., Nucl. Instrum. Methods Phys. Res. A 516, 539 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    A.S. Vorobyev, O.A. Shcherbakov, A.M. Gagarski, G.V. Val’ski, G.A. Petrov, EPJ Web of Conferences 8, 03004 (2010)CrossRefGoogle Scholar
  20. 20.
    K. Nishio, Y. Nakagome, I. Kanno, I. Kimura, J. Nucl. Sci. Technol. 32, 404 (1995)CrossRefGoogle Scholar
  21. 21.
    A. Göök, F.J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    K. Nishio, Y. Nakagome, H. Yamamoto, I. Kimura, Nucl. Phys. A 632, 540 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    C. Tsuchiya, Y. Nakagome, H. Yamana, H. Moriyama, K. Nishio, I. Kanno, K. Shin, I. Kimura, J. Nucl. Sci. Technol. 37, 941 (2000)CrossRefGoogle Scholar
  24. 24.
    U. Brosa, S. Grossmann, A. Müller, Phys. Rep. 197, 167 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    P. Möller, D.G. Madland, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    M.B. Chadwick, M. Herman, P. Obložinský et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    P. Santi, M. Miller, Nucl. Sci. Eng. 160, 190 (2008)CrossRefGoogle Scholar
  28. 28.
    N.E. Holden, M.S. Zucker, Nucl. Sci. Eng. 98, 174 (1988)CrossRefGoogle Scholar
  29. 29.
    D.G. Madland, J.R. Nix, Nucl. Sci. Eng. 81, 213 (1982)CrossRefGoogle Scholar
  30. 30.
    R. Billnert, F.J. Hambsch, A. Oberstedt, S. Oberstedt, Phys. Rev. C 87, 024601 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    V.V. Verbinski, H. Weber, R.E. Sund, Phys. Rev. C 7, 1173 (1973)ADSCrossRefGoogle Scholar
  32. 32.
    A.D. Carlson, V.G. Pronyaev, D.L. Smith, N.M. Larson, Z. Chen, G.M. Hale, F.J. Hambsch, E.V. Gai, S.Y. Oh, S.A. Badikov et al., Nucl. Data Sheets 110, 3215 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    A. Gatera, T. Belgya, W. Geerts, A. Göök, F.J. Hambsch, M. Lebois, B. Maróti, A. Moens, A. Oberstedt, S. Oberstedt et al., Phys. Rev. C 95, 064609 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    A. Oberstedt, T. Belgya, R. Billnert, R. Borcea, T. Bryś, W. Geerts, A. Göök, F.J. Hambsch, Z. Kis, T. Martinez et al., Phys. Rev. C 87, 051602 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    N.E. Holden, M.S. Zucker, Prompt neutron multiplicities for the transplutonium nuclides, in International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, edited by P. Young, Vol. 2 (Gordon and Breach Science Publishers, 1985) p. 1631Google Scholar
  36. 36.
    R.R. Spencer, R. Gwin, R. Ingle, Nucl. Sci. Eng. 80, 603 (1982)CrossRefGoogle Scholar
  37. 37.
    A.S. Vorobyev, V.N. Dushin, F.J. Hambsch, V.A. Jakovlev, V.A. Kalinin, A.B. Laptev, B.F. Petrov, O.A. Shcherbakov, Distribution of prompt neutron emission probability for fission fragments in spontaneous fission of ${}^{252}$Cf and ${}^{244,248}$Cm, in International Conference on Nuclear Data for Science and Technology, edited by R. Haight, M. Chadwick, T. Kawano, P. Talou, Vol. CP769 (American Institute of Physics, 2005) p. 613Google Scholar
  38. 38.
    M. Soleilhac, J. Fréhaut, J. Gauriau, J. Nucl. Energy 23, 257 (1969)CrossRefGoogle Scholar
  39. 39.
    J. Terrell, Phys. Rev. 108, 783 (1957)ADSCrossRefGoogle Scholar
  40. 40.
    F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Phys. Rev. C 6, 1023 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    J.M. Verbeke, C. Hagmann, D. Wright, Technical Report UCRL-AR-228518, Lawrence Livermore National Laboratory (2010)Google Scholar
  42. 42.
    T.E. Valentine, Ann. Nucl. Energy 28, 191 (2001)CrossRefGoogle Scholar
  43. 43.
    A. Oberstedt, R. Billnert, F.J. Hambsch, S. Oberstedt, Phys. Rev. C 92, 014618 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, T.A. Bredeweg, R.C. Haight, A.C. Hayes-Sterbenz, H.Y. Lee, J.M. O’Donnell, J.L. Ullmann, Phys. Rev. C 90, 014602 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    S. Oberstedt, R. Billnert, A. Gatera, W. Geerts, P. Halipré, F.J. Hambsch, M. Lebois, A. Oberstedt, P. Marini, M. Vidali et al., Phys. Proc. 64, 83 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, J.M. Gostic, T.A. Bredeweg, R.C. Haight, A.C. Hayes, M. Jandel, J.M. O’Donnell et al., Phys. Rev. C 85, 021601(R) (2012)ADSCrossRefGoogle Scholar
  47. 47.
    H. Nifenecker, C. Signarbieux, M. Ribrag, J. Poitou, J. Matuszek, Nucl. Phys. A 189, 285 (1972)ADSCrossRefGoogle Scholar
  48. 48.
    T. Wang, G. Li, L. Zhu, Q. Meng, L. Wang, H. Han, W. Zang, H. Xia, L. Hou, R. Vogt et al., Phys. Rev. C 93, 014606 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    J.E. Lynn, Phys. Lett. 18, 31 (1965)ADSCrossRefGoogle Scholar
  50. 50.
    V. Stavinsky, M.O. Shaker, Nucl. Phys. 62, 667 (1965)CrossRefGoogle Scholar
  51. 51.
    O.A. Shcherbakov, Sov. J. Part. Nucl. 21, 177 (1990)Google Scholar
  52. 52.
    F.J. Hambsch, H.H. Knitter, C. Budtz-Jørgensen, J.P. Theobald, Nucl. Phys. A 491, 56 (1989)ADSCrossRefGoogle Scholar
  53. 53.
    F.J. Hambsch, Prompt fission neutron emission of ${}^{235}$U(n,f): thermal and resonance region, in 14th International Conference on Nuclear Reaction Mechanisms (CERN, 2015)Google Scholar
  54. 54.
    H.R. Bowman, J.C.D. Milton, S.G. Thompson, W.J. Swiatecki, Phys. Rev. 126, 2120 (1962)ADSCrossRefGoogle Scholar
  55. 55.
    K. Skarsvåg, K. Bergheim, Nucl. Phys. 45, 72 (1963)CrossRefGoogle Scholar
  56. 56.
    J.S. Pringle, F.D. Brooks, Phys. Rev. Lett. 35, 1563 (1975)ADSCrossRefGoogle Scholar
  57. 57.
    A.M. Gagarski, I.S. Guseva, V.E. Sokolov, G.V. Val’ski, G.A. Petrov, D.O. Krinitsin, D.V. Nikolaev, T.A. Zavarukhina, V.I. Petrova, Bull. Russ. Acad. Sci. Phys. 72, 773 (2008)CrossRefGoogle Scholar
  58. 58.
    S.A. Pozzi, B. Wieger, A. Enqvist, S.D. Clarke, M. Flaska, E. Larsen, R.C. Haight, E. Padovani, Nucl. Sci. Eng. 178, 250 (2014)CrossRefGoogle Scholar
  59. 59.
    J. Randrup, R. Vogt, Phys. Rev. C 89, 044601 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    E.J. Winhold, P.T. Demos, I. Halpern, Phys. Rev. 87, 1139 (1952)ADSCrossRefGoogle Scholar
  61. 61.
    L.S. Leong, PhD Thesis, Université Paris Sud, Orsay, France (2013)Google Scholar
  62. 62.
    A.S. Vorobyev, A.M. Gagarski, O.A. Shcherbakov, L.A. Vaishnene, A.L. Barabanov, Pis’ma v Zh. Eksp. Teor. Fiz. 102, 231 (2015)Google Scholar
  63. 63.
    V. Kleinrath, PhD Thesis, Vienna University of Technology, Austria (2015)Google Scholar
  64. 64.
    J.M. Mueller, M.W. Ahmed, B. Davis, J.M. Hall, S.S. Henshaw, M.S. Johnson, H.J. Karwowski, D. Markoff, L.S. Myers, B.A. Perdue et al., Phys. Rev. C 85, 014605 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    K. Skarsvåg, Phys. Rev. C 22, 638 (1980)ADSCrossRefGoogle Scholar
  66. 66.
    M.J. Marcath, T.H. Shin, S.D. Clarke, P. Peerani, S.A. Pozzi, Nucl. Instrum. Methods Phys. Res. A 830, 163 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    J.L. Ullmann, E.M. Bond, T.A. Bredeweg, A. Couture, R.C. Haight, M. Jandel, T. Kawano, H.Y. Lee, J.M. O’Donnell, A.C. Hayes et al., Phys. Rev. C 87, 044607 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    M. Jandel, G. Rusev, E.M. Bond, T.A. Bredeweg, M.B. Chadwick, A. Couture, M.M. Fowler, R.C. Haight, T. Kawano, A.L. Keksis et al., Phys. Proc. 59, 101 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    M. Jandel, B. Baramsai, T. Bredeweg, A. Couture, A. Favalli, A. Hayes, K. Ianakiev, M. Iliev, T. Kawano, S. Mosby et al., Nucl. Instrum. Methods Phys. Res. A 882, 105 (2018)CrossRefGoogle Scholar
  70. 70.
    L.F. Nakae, G.F. Chapline, A.M. Glenn, P.L. Kerr, K.S. Kim, S.A. Ouedraogo, M.K. Prasad, S.A. Sheets, N.J. Snyderman, J.M. Verbeke, R.E. Wurtz, Recent Developments in Fast Neutron Detection and Multiplicity Counting with Verification with Liquid Scintillator, LLNL-CONF-489556 (2011)Google Scholar
  71. 71.
    J.M. Verbeke, L.F. Nakae, R. Vogt, LLNL-JRNL-731534 (2017)Google Scholar
  72. 72.
    M.T. Andrews, M.E. Rising, K.C. Meierbachtol, P. Talou, A. Sood, C.R. Bates, E.A. McKigney, C.J. Solomon, LA-UR-17-26443 (2017)Google Scholar
  73. 73.
    J.F. Martin, PhD Thesis, Université Paris Sud, Orsay, France (2014)Google Scholar
  74. 74.
    E. Pellereau, Phys. Rev. C 95, 054603 (2017)ADSCrossRefGoogle Scholar
  75. 75.
    A.S. Vorobyev, O.A. Shcherbakov, V.N. Dushin, V.A. Jakovlev, V.A. Kalinin, B.F. Petrov, F.J. Hambsch, A.B. Laptev, Prompt neutron emission from fragments in spontaneous fission of ${}^{244,248}$Cm and ${}^{252}$Cf, in International Workshop on Nuclear Fission and Fission Product Spectroscopy (A.I.P., 2005)Google Scholar
  76. 76.
    A.M. Daskalakis, R.M. Bahran, E.J. Blain, B.J. McDermott, S. Piela, Y. Danon, D.P. Barry, G. Leinweber, R.C. Block, M.J. Rapp et al., Ann. Nucl. Energy 73, 455 (2014)CrossRefGoogle Scholar
  77. 77.
    D. Neudecker, P. Talou, T. Kawano, D.L. Smith, R. Capote, M.E. Rising, A.C. Kahler, Nucl. Instrum. Methods Phys. Res. A 791, 80 (2015)ADSCrossRefGoogle Scholar
  78. 78.
    N. Kornilov, Fission Neutrons: Experiments, Evaluation, Modeling and Open Problems, (Springer International Publishing, 2015)Google Scholar
  79. 79.
    B. Morillon, P. Romain, private communicationGoogle Scholar
  80. 80.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)ADSCrossRefGoogle Scholar
  81. 81.
    P. Talou, B. Becker, T. Kawano, M.B. Chadwick, Y. Danon, Phys. Rev. C 83, 064612 (2011)ADSCrossRefGoogle Scholar
  82. 82.
    A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)ADSCrossRefGoogle Scholar
  83. 83.
    G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  84. 84.
    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)ADSCrossRefGoogle Scholar
  85. 85.
    J. Kopecky, M. Uhl, Phys. Rev. C 41, 1941 (1990)ADSCrossRefGoogle Scholar
  86. 86.
    R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  87. 87.
    J.K. Tuli, Nucl. Instrum. Methods Phys. Res. A 369, 506 (1996)ADSCrossRefGoogle Scholar
  88. 88.
    A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)Google Scholar
  89. 89.
    E. Gadioli, Pre-Equilibrium Nuclear Reactions (Oxford University Press, 1992)Google Scholar
  90. 90.
    R. Vogt, J. Randrup, D.A. Brown, M.A. Descalle, W. Ormand, Phys. Rev. C 85, 024608 (2012)ADSCrossRefGoogle Scholar
  91. 91.
    R. Vogt, J. Randrup, Phys. Rev. C 87, 044602 (2013)ADSCrossRefGoogle Scholar
  92. 92.
    S. Lemaire, P. Talou, T. Kawano, M.B. Chadwick, D.G. Madland, Phys. Rev. C 72, 024601 (2005)ADSCrossRefGoogle Scholar
  93. 93.
    H. Koura, M. Uno, T. Tachibana, M. Yamada, Nucl. Phys. A 674, 47 (2000)ADSCrossRefGoogle Scholar
  94. 94.
    C. Budtz-Jørgensen, H.H. Knitter, Nucl. Phys. A 490, 307 (1988)ADSCrossRefGoogle Scholar
  95. 95.
    R. Vogt, J. Randrup, Phys. Rev. C 84, 044621 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    J. Terrell, Phys. Rev. 113, 527 (1959)MathSciNetADSCrossRefGoogle Scholar
  97. 97.
    V.F. Weisskopf, Phys. Rev. 113, 527 (1937)Google Scholar
  98. 98.
    J. Randrup, R. Vogt, Phys. Rev. C 80, 024601 (2009)ADSCrossRefGoogle Scholar
  99. 99.
    R. Vogt, J. Randrup, Phys. Rev. C 96, 064620 (2017)ADSCrossRefGoogle Scholar
  100. 100.
    B.L. Berman, S.C. Fultz, Rev. Mod. Phys. 47, 713 (1975)ADSCrossRefGoogle Scholar
  101. 101.
    F.B. Brown, M.E. Rising, J.L. Alwin, Technical Report LA-UR-17-23822, Los Alamos National Laboratory (2017)Google Scholar
  102. 102.
    J.T. Goorley, Technical Report LA-UR-14-24680, Los Alamos National Laboratory (2014)Google Scholar
  103. 103.
    X-5 Monte Carlo Team, Technical Report LA-UR-03-1987, Los Alamos National Laboratory (2005)Google Scholar
  104. 104.
    D.B. Pelowitz, Technical Report LA-CP-11-00438, Los Alamos National Laboratory (2011)Google Scholar
  105. 105.
    P. Santi, D.H. Beddingfield, D.R. Mayo, Nucl. Phys. A 756, 325 (2005)ADSCrossRefGoogle Scholar
  106. 106.
    J.P. Lestone, Technical Report LA-UR-05-0288, Los Alamos National Laboratory (2005)Google Scholar
  107. 107.
    S.A. Pozzi, E. Padovani, M. Marseguerra, Nucl. Instrum. Methods Phys. Res. A 513, 550 (2003)ADSCrossRefGoogle Scholar
  108. 108.
    T.E. Valentine, J.T. Mihalczo, Ann. Nucl. Energy 23, 1271 (1996)CrossRefGoogle Scholar
  109. 109.
    K.H. Schmidt, B. Jurado, Phys. Rev. Lett. 104, 212501 (2010)ADSCrossRefGoogle Scholar
  110. 110.
    C. Morariu, A. Tudora, F.J. Hambsch, S. Oberstedt, C. Manailescu, J. Phys. G: Nucl. Part. Phys. 39, 055103 (2012)ADSCrossRefGoogle Scholar
  111. 111.
    H.R. Bowman, J.C.D. Milton, S.G. Thompson, W.J. Swiatecki, Phys. Rev. 129, 2133 (1963)ADSCrossRefGoogle Scholar
  112. 112.
    F.J. Hambsch, S. Oberstedt, A.A. Adili, R. Borcea, A. Oberstedt, A. Tudora, S. Zeynalov, J. Korean Phys. Soc. 59, 1654 (2011)CrossRefGoogle Scholar
  113. 113.
    G. Rusev, B. Baramsai, E.M. Bond, T.A. Bredeweg, M. Jandel, D.J. Vieira, A. Couture, S. Mosby, J.L. Ullmann, A.C. Hayes, Measurements of correlated fission data with DANCE and NEUANCE, in Proceedings of the Sixth International Conference on Fission and Properties of Neutron-Rich Nuclei, ICFN6 (World Scientific, 2017)Google Scholar
  114. 114.
    M. Jandel, Technical Report LA-UR-12-24795, Los Alamos National Laboratory (2012)Google Scholar
  115. 115.
    J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)ADSCrossRefGoogle Scholar
  116. 116.
    D.K. Hauck, A. Favalli, P.A. Santi, S. Croft, Technical Report LA-UR-13-25358, Los Alamos National Laboratory (2013)Google Scholar
  117. 117.
    M.S. Zucker, N.E. Holden, Technical Report BNL-38491, Brookhaven National Laboratory (1986)Google Scholar
  118. 118.
    A. Göök, W. Geerts, F.J. Hambsch, S. Oberstedt, M. Vidali, S. Zeynalov, Nucl. Instrum. Methods Phys. Res. A 830, 366 (2016)ADSCrossRefGoogle Scholar
  119. 119.
    P. Talou, T. Kawano, I. Stetcu, J.P. Lestone, E. McKigney, M.B. Chadwick, Phys. Rev. C 94, 064613 (2016)ADSCrossRefGoogle Scholar
  120. 120.
    T. Granier, Phys. Proc. 64, 183 (2015)ADSCrossRefGoogle Scholar
  121. 121.
    A. Chatillon, G. Bélier, T. Granier, B. Laurent, B. Morillon, J. Taieb, R.C. Haight, M. Devlin, R.O. Nelson, S. Noda et al., Phys. Rev. C 89, 014611 (2014)ADSCrossRefGoogle Scholar
  122. 122.
    R.P. Feynman, F.D. Hoffmann, R. Serber, J. Nucl. Energy 3, 64 (1956)Google Scholar
  123. 123.
    D.M. Cifarelli, W. Hage, Nucl. Instrum. Methods Phys. Res. A 251, 550 (1986)ADSCrossRefGoogle Scholar
  124. 124.
    M.K. Prasad, N.J. Snyderman, Nucl. Sci. Eng. 172, 300 (2012)CrossRefGoogle Scholar
  125. 125.
    J.M. Verbeke, Nucl. Sci. Eng. 182, 481 (2016)CrossRefGoogle Scholar
  126. 126.
    G.F. Chapline, L.F. Nakae, N. Snyderman, J.M. Verbeke, R. Wurtz, Monitoring spent or reprocessed nuclear fuel using fast neutrons, in Proceedings of the 15th International Conference on Emerging Nuclear Energy Systems (ICENES 2011), San Francisco, CA (Lawrence Livermore National Laboratory, 2011), LLNL-CONF-485216Google Scholar
  127. 127.
    A. Enqvist, I. Pázsit, S. Pozzi, Nucl. Instrum. Methods Phys. Res. A 556, 598 (2006)ADSCrossRefGoogle Scholar
  128. 128.
    A. Enqvist, S.A. Pozzi, I. Pázsit, Nucl. Instrum. Methods Phys. Res. A 607, 451 (2009)ADSCrossRefGoogle Scholar
  129. 129.
    I. Pázsit, L. Pál, Neutron Fluctuations: A Treatise on the Physics of Branching Processes (Elsevier, Oxford, 2008)Google Scholar
  130. 130.
    K.S. Kim, L.F. Nakae, M.K. Prasad, N.J. Snyderman, J.M. Verbeke, Nucl. Sci. Eng. 181, 225 (2015)CrossRefGoogle Scholar
  131. 131.
    J.M. Verbeke, G.F. Chapline, S.A. Sheets, Nucl. Instrum. Methods Phys. Res. A 782, 126 (2015)ADSCrossRefGoogle Scholar
  132. 132.
    J. Randrup, P. Talou, R. Vogt, EPJ Web of Conferences 146, 04003 (2017)CrossRefGoogle Scholar
  133. 133.
    C. Wagemans (Editor), The Nuclear Fission Process (CRC Press, Inc., 1991)Google Scholar
  134. 134.
    P. Möller, C. Schmitt, Eur. Phys. J. A 53, 7 (2017)ADSCrossRefGoogle Scholar
  135. 135.
    A.J. Sierk, Phys. Rev. C 96, 034603 (2017)ADSCrossRefGoogle Scholar
  136. 136.
    L. Bonneau, P. Quentin, I.N. Mikhailov, Phys. Rev. C 75, 064313 (2007)ADSCrossRefGoogle Scholar
  137. 137.
    F. Gönnenwein, I. Tsekhanovich, V. Rubchenya, Int. J. Mod. Phys. E 16, 410 (2007)ADSCrossRefGoogle Scholar
  138. 138.
    S.G. Kadmensky, L.V. Titova, Phys. At. Nucl. 72, 1738 (2009)CrossRefGoogle Scholar
  139. 139.
    J. Randrup, P. Möller, Phys. Rev. Lett. 106, 132503 (2011)ADSCrossRefGoogle Scholar
  140. 140.
    Y. Aritomo, S. Chiba, F. Ivanyuk, Phys. Rev. C 90, 054609 (2014)ADSCrossRefGoogle Scholar
  141. 141.
    A. Staszczak, A. Baran, J. Dobaczewski, W. Nazarewicz, Phys. Rev. C 80, 014309 (2009)ADSCrossRefGoogle Scholar
  142. 142.
    J.L. Ullmann, T. Kawano, T.A. Bredeweg, A. Couture, R.C. Haight, M. Jandel, J.M. O’Donnell, R.S. Rundberg, D.J. Vieira, J.B. Wilhelmy et al., Phys. Rev. C 89, 034603 (2014)ADSCrossRefGoogle Scholar
  143. 143.
    D.L. Duke, PhD Thesis, Colorado School of Mines (2015)Google Scholar
  144. 144.
    C. Bhatia, B. Fallin, C. Howell, W. Tornow, M. Gooden, J. Kelley, C. Arnold, E. Bond, T. Bredeweg, M. Fowler et al., Nucl. Data Sheets 119, 324 (2014)ADSCrossRefGoogle Scholar
  145. 145.
    M.O. Frégeau, S. Oberstedt, T. Gamboni, W. Geerts, F.J. Hambsch, M. Vidali, Nucl. Instrum. Methods Phys. Res. A 817, 35 (2016)ADSCrossRefGoogle Scholar
  146. 146.
    T. Materna, A. Letourneau, C. Amouroux, A. Marchix, O. Litaize, O. Serot, D. Regnier, A. Blanc, M. Jentschel, U. Köster et al., EPJ Web of Conferences 93, 02020 (2015)CrossRefGoogle Scholar
  147. 147.
    D.L. Duke, F. Tovesson, A.B. Laptev, S. Mosby, F.J. Hambsch, T. Bryś, M. Vidali, Phys. Rev. C 94, 054604 (2016)ADSCrossRefGoogle Scholar
  148. 148.
    K. Meierbachtol, F. Tovesson, D.L. Duke, V. Geppert-Kleinrath, B. Manning, R. Meharchand, S. Mosby, D. Shields, Phys. Rev. C 94, 034611 (2016)ADSCrossRefGoogle Scholar
  149. 149.
    R. Müller, A.A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29, 885 (1984)ADSCrossRefGoogle Scholar
  150. 150.
    A.A. Naqvi, F. Käppeler, F. Dickmann, R. Müller, Phys. Rev. C 34, 218 (1986)ADSCrossRefGoogle Scholar
  151. 151.
    S.C. Burnett, R.L. Ferguson, F. Plasil, H.W. Schmitt, Phys. Rev. C 3, 2034 (1971)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Talou
    • 1
  • R. Vogt
    • 2
    • 3
  • J. Randrup
    • 4
  • M. E. Rising
    • 5
  • S. A. Pozzi
    • 6
  • J. Verbeke
    • 2
  • M. T. Andrews
    • 5
  • S. D. Clarke
    • 6
  • P. Jaffke
    • 1
  • M. Jandel
    • 7
    • 9
  • T. Kawano
    • 1
  • M. J. Marcath
    • 6
  • K. Meierbachtol
    • 8
  • L. Nakae
    • 2
  • G. Rusev
    • 7
  • A. Sood
    • 5
  • I. Stetcu
    • 1
  • C. Walker
    • 7
  1. 1.Nuclear Physics Group, Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Nuclear & Chemical Sciences DivisionLawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Physics DepartmentUniversity of California at DavisDavisUSA
  4. 4.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Monte Carlo Methods, Codes, and Applications GroupLos Alamos National LaboratoryLos AlamosUSA
  6. 6.Department of Nuclear Engineering and Radiological SciencesUniversity of MichiganAnn ArborUSA
  7. 7.Nuclear and Radiochemistry GroupLos Alamos National LaboratoryLos AlamosUSA
  8. 8.Nuclear Engineering and NonproliferationLos Alamos National LaboratoryLos AlamosUSA
  9. 9.Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellUSA

Personalised recommendations