Skip to main content
Log in

Measurement of the 234U(n, f ) cross-section with quasi-monoenergetic beams in the keV and MeV range using a Micromegas detector assembly

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The 234U neutron-induced fission cross-section has been measured at incident neutron energies of 452, 550, 651 keV and 7.5, 8.7, 10 MeV using the 7Li (p, n) and the 2H(d, n) reactions, respectively, relative to the 235U(n, f ) and 238U(n, f ) reference reactions. The measurement was performed at the neutron beam facility of the National Center for Scientific Research “Demokritos”, using a set-up based on Micromegas detectors. The active mass of the actinide samples and the corresponding impurities were determined via \( \alpha\)-spectroscopy using a surface barrier silicon detector. The neutron spectra intercepted by the actinide samples have been thoroughly studied by coupling the NeuSDesc and MCNP5 codes, taking into account the energy and angular straggling of the primary ion beams in the neutron source targets in addition to contributions from competing reactions (e.g. deuteron break-up) and neutron scattering in the surrounding materials. Auxiliary Monte Carlo simulations were performed making combined use of the FLUKA and GEF codes, focusing particularly on the determination of the fission fragment detection efficiency. The developed methodology and the final results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. NEA, Accelerator-driven Systems (ADS) and Fast Reactors (FR) in advanced nuclear fuel Cycles, Technical Report (Nuclear Energy Agency of the OECD, NEA, 2002)

  2. https://www.gen-4.org Gen-IV International Forum

  3. A. Stanculescu, Ann. Nucl. Energy 62, 607 (2013)

    Article  Google Scholar 

  4. F. Goldner, R. Versluis, Transmutation capabilities of Generation 4 Reactors, Technical Report (Nuclear Energy Agency of the OECD, NEA, 2007)

  5. M. Diakaki et al., Acta Phys. Pol. B 47, 789 (2016)

    Article  ADS  Google Scholar 

  6. M. Diakaki et al., Eur. Phys. J. A 49, 1 (2013)

    Article  Google Scholar 

  7. IAEA, Thorium Fuel Cycle - Potential Benefits and Challenges (International Atomic Energy Agency, Nuclear Fuel Cycle and Materials Section, Vienna, 2005)

  8. R. Lamphere, Phys. Rev. 91, 655 (1953)

    Article  ADS  Google Scholar 

  9. R. Lamphere, R. Greene, Phys. Rev. 100, 763 (1955)

    Article  ADS  Google Scholar 

  10. R. Lamphere, Phys. Rev. 104, 1654 (1956)

    Article  ADS  Google Scholar 

  11. R. Lamphere, Nucl. Phys. 38, 561 (1962)

    Article  Google Scholar 

  12. L. Lowry, Report Los Alamos Scientific Lab. No. 1714 (1954)

  13. R. Babcock, Technical Report, Bettis Atomic Power Lab., Westinghouse, Pittsburgh, PA, USA (1961)

  14. P. White, J. Hodgkinson, G. Wall, in Physics and Chemistry of Fission Conf. Salzburg, Vol. I (EANDC (UK), 1965) p. 219

  15. G.D. James, J.W.T. Dabbs, J.A. Harvey, N.W. Hill, R.H. Schindler, Phys. Rev. C 15, 2083 (1977)

    Article  ADS  Google Scholar 

  16. J.W. Meadows, Nucl. Sci. Eng. 65, 171 (1978)

    Article  Google Scholar 

  17. C. Paradela et al., Phys. Rev. C 82, 034601 (2010)

    Article  ADS  Google Scholar 

  18. F. Tovesson, A. Laptev, T. Hill, Nucl. Sci. Eng. 178, 57 (2014)

    Article  Google Scholar 

  19. D. Karadimos et al., Phys. Rev. C 89, 044606 (2014)

    Article  ADS  Google Scholar 

  20. A. Al-Adili, F.J. Hambsch, S. Pomp, S. Oberstedt, M. Vidali, Phys. Rev. C 93, 034603 (2016)

    Article  ADS  Google Scholar 

  21. E. Leal-Cidoncha et al., Nucl. Data Sheets 119, 42 (2014)

    Article  ADS  Google Scholar 

  22. N. Otuka et al., Nucl. Data Sheets 120, 272 (2014)

    Article  ADS  Google Scholar 

  23. M. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  24. JEFF-3.2: Evaluated Data Library (2014), http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/

  25. K. Shibata et al., Nucl. Sci. Tech. 48, 1 (2011)

    Article  ADS  Google Scholar 

  26. Z. Ge et al., J. Korean Phys. Soc. 59, 1052 (2011)

    Article  Google Scholar 

  27. ROSFOND-2010 Evaluated Data Library (2010), http://www.ippe.ru/podr/abbn/english/libr/rosfond.php

  28. R. Vlastou et al., Nucl. Instrum. Methods B 269, 3266 (2011)

    Article  ADS  Google Scholar 

  29. R. Vlastou et al., Phys. Proc. 66, 425 (2015)

    Article  ADS  Google Scholar 

  30. R.P. Gardner, K. Verghese, H.M. Lee, Nucl. Instrum. Methods 176, 615 (1980)

    Article  ADS  Google Scholar 

  31. R. Whitcher, SACALC3, https://sites.google.com/site/averagesolidangle2/dow/sacalc3

  32. G.F. Knoll, Radiation Detection and Measurement, 3rd edition (John Wiley and Sons, Inc., 2000) p. 119

  33. Y. Giomataris et al., Nucl. Instrum. Methods A 376, 29 (1996)

    Article  ADS  Google Scholar 

  34. Y. Giomataris, Nucl. Instrum. Methods A 419, 239 (1998)

    Article  ADS  Google Scholar 

  35. Y. Giomataris, Micromegas: results and prospects, Technical Report, CEA/Saclay, DAPNIA, http://www.slac.stanford.edu/pubs/icfa/fall99/paper1/paper1a.html

  36. Micro pattern gas detectors - RD51, http://mpgd.web.cern.ch/mpgd/

  37. J.F. Ziegler, Nucl. Instrum. Methods B 219, 1027 (2004)

    Article  ADS  Google Scholar 

  38. J. Ziegler, Stopping and range of ions in matter, SRIM 2013, www.srim.org

  39. S. Andriamonje et al., J. Instrum. 5, P02001 (2010)

    Article  Google Scholar 

  40. S. Andriamonje et al., J. Korean Phys. Soc. 59, 1601 (2011)

    Article  Google Scholar 

  41. S. Andriamonje et al., IEEE Trans. Nucl. Sci. 56, 1076 (2009)

    Article  ADS  Google Scholar 

  42. A. Carlson et al., Nucl. Data Sheets 110, 3215 (2009)

    Article  ADS  Google Scholar 

  43. E. Birgersson, G. Loevestam, NeuSDesc neutron source description software manual, Technical Report, EUR 23794 EN (European Commission, 2009)

  44. L. Waters et al., AIP Conf. Proc. 896, 81 (2007)

    Article  ADS  Google Scholar 

  45. A. Ferrari, P. Sala, A. Fass, J. Ranft, FLUKA: A multi-particle transport code (program version 2005) (CERN, Geneva, 2005) cds.cern.ch/record/898301

  46. G. Battistoni et al., Ann. Nucl. Energy 82, 10 (2015)

    Article  Google Scholar 

  47. K.H. Schmidt et al., Nucl. Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stamatopoulos.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamatopoulos, A., Kanellakopoulos, A., Kalamara, A. et al. Measurement of the 234U(n, f ) cross-section with quasi-monoenergetic beams in the keV and MeV range using a Micromegas detector assembly. Eur. Phys. J. A 54, 7 (2018). https://doi.org/10.1140/epja/i2018-12429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12429-2

Navigation