Skip to main content
Log in

Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Reinhardt, arXiv:1706.02702v1 [hep-th]

  2. A.P. Szczepaniak, E. Swanson, Phys. Rev. D 65, 025012 (2001)

    Article  ADS  Google Scholar 

  3. C. Feuchter, H. Reinhardt, Phys. Rev. D 70, 105021 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. D.R. Campagnari, H. Reinhardt, Phys. Rev. D 82, 105021 (2010)

    Article  ADS  Google Scholar 

  5. M. Pak, H. Reinhardt, Phys. Rev. D 88, 125021 (2013)

    Article  ADS  Google Scholar 

  6. P. Vastag, H. Reinhardt, D. Campagnari, Phys. Rev. D 93, 065003 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. D.R. Campagnari, E. Ebadati, H. Reinhardt, P. Vastag, Phys. Rev. D 94, 074027 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Bicudo, M. Cardoso, F.J. Llanes-Estrada, T.V. Cauteren, Phys. Rev. D 94, 054006 (2016)

    Article  ADS  Google Scholar 

  9. D.A. Amor-Quiroz, T. Yépez-Martínez, P.O. Hess, O. Civitarese, A. Weber, arXiv:1704.01947 [nucl-th]

  10. QCDSF-UKQCD Collaboration (W. Bietenholz et al.), Phys. Rev. D 84, 054509 (2011)

    Google Scholar 

  11. R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Phys. Rev. D 84, 074508 (2011)

    Article  ADS  Google Scholar 

  12. A. Bashir, L. Chang, I.C. Cloët, B. El-Bennich, Y. Liu, C.D. Roberts, P.C. Tandy, Commun. Theor. Phys. 58, 79 (2012)

    Article  ADS  Google Scholar 

  13. N. Suzuki, B. Juliá-Díaz, H. Kamano, T.-S.H. Lee, A. Matsuyama, T. Sato, Phys. Rev. Lett. 104, 042302 (2010)

    Article  ADS  Google Scholar 

  14. J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloët, C.D. Roberts, S. Xu, H. Zong, Phys. Rev. Lett. 115, 171801 (2015)

    Article  ADS  Google Scholar 

  15. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Prog. Part. Nucl. Phys. 91, 1 (2016)

    Article  ADS  Google Scholar 

  16. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer, Heidelberg, 1980)

  17. N.H. Christ, T.D. Lee, Phys. Rev. D 22, 939 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  18. T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic Publishers, New York, 1981)

  19. A. Szczepaniak, E.S. Swanson, C.R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76, 2011 (1996)

    Article  ADS  Google Scholar 

  20. A.P. Szczepaniak, E.S. Swanson, Phys. Lett. B 577, 61 (2003)

    Article  ADS  Google Scholar 

  21. T. Yépez-Martínez, P.O. Hess, A.P. Szczepaniak, O. Civitarese, Phys. Rev. C 81, 045204 (2010)

    Article  ADS  Google Scholar 

  22. Jeff Greensite, Adam P. Szczepaniak, Phys. Rev. D 91, 034503 (2015)

    Article  ADS  Google Scholar 

  23. Jeff Greensite, Adam P. Szczepaniak, Phys. Rev. D 93, 074506 (2016)

    Article  ADS  Google Scholar 

  24. F.J. Llanes-Estrada, S.R. Cotanch, Nucl. Phys. A 697, 303 (2002)

    Article  ADS  Google Scholar 

  25. P. Guo, A.P. Szczepaniak, G. Galata, A. Vassallo, E. Santopinto, Phys. Rev. D 78, 056003 (2008)

    Article  ADS  Google Scholar 

  26. P. Guo, T. Yépez-Martínez, A.P. Szczepaniak, Phys. Rev. D 89, 116005 (2014)

    Article  ADS  Google Scholar 

  27. J. Escher, J.P. Draayer, J. Math. Phys. 39, 5123 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Yépez-Martínez, O. Civitarese, P.O. Hess, Int. J. Mod. Phys. E 25, 1650067 (2016)

    Article  Google Scholar 

  29. T. Yépez-Martínez, O. Civitarese, P.O. Hess, Int. J. Mod. Phys. E 26, 1750012 (2017)

    Article  Google Scholar 

  30. T. Yépez-Martínez, O. Civitarese, P.O. Hess, arXiv:1708.04980 [nucl-th]

  31. M.V. Nuñez, S.H. Lerma, P.O. Hess, S. Jesgarz, O. Civitarese, M. Reboiro, Phys. Rev. C 70, 035208 (2004)

    Article  ADS  Google Scholar 

  32. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter O. Hess.

Additional information

Communicated by T. Biro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yepez-Martinez, T., Civitarese, O. & Hess, P.O. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons. Eur. Phys. J. A 54, 22 (2018). https://doi.org/10.1140/epja/i2018-12424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12424-7

Navigation