Microscopic description of fission in odd-mass uranium and plutonium nuclei with the Gogny energy density functional

Regular Article - Theoretical Physics

Abstract.

The parametrization D1M of the Gogny energy density functional is used to study fission in the odd-mass Uranium and Plutonium isotopes with \(A=233, \ldots , 249\) within the framework of the Hartree-Fock-Bogoliubov (HFB) Equal Filling Approximation (EFA). Ground state quantum numbers and deformations, pairing energies, one-neutron separation energies, barrier heights and fission isomer excitation energies are given. Fission paths, collective masses and zero point rotational and vibrational quantum corrections are used to compute the systematic of the spontaneous fission half-lives \(t_{SF}\), the masses and charges of the fission fragments as well as their intrinsic shapes. Although there exits a strong variance of the predicted fission rates with respect to the details involved in their computation, it is shown that both the specialization energy and the pairing quenching effects, taken into account fully variationally within the HFB-EFA blocking scheme, lead to larger spontaneous fission half-lives in odd-mass U and Pu nuclei as compared with the corresponding even-even neighbors. It is shown that modifications of a few percent in the strengths of the neutron and proton pairing fields can have a significant impact on the collective masses leading to uncertainties of several orders of magnitude in the predicted \(t_{SF}\) values. Alpha-decay lifetimes have also been computed using a parametrization of the Viola-Seaborg formula.

References

  1. 1.
    S. Björnholm, J.E. Lynn, Rev. Mod. Phys. 52, 725 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    H.J. Specht, Rev. Mod. Phys. 46, 773 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    L. Meitner, O.R. Frish, Nature 143, 239 (1939)ADSCrossRefGoogle Scholar
  4. 4.
    C. Wagemans, The Nuclear Fission Process (CRC Press, Boca Raton, 1991)Google Scholar
  5. 5.
    A. Baran, M. Kowal, P.-G. Reinhard, L.M. Robledo, A. Staszczak, M. Warda, Nucl. Phys. A 994, 442 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    N. Schunck, L.M. Robledo, Rep. Prog. Phys. 79, 116301 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 58, 2126 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    M. Warda, J.L. Egido, Phys. Rev. C 86, 014322 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Warda, J.L. Egido, L.M. Robledo, K. Pomorski, Phys. Rev. C 66, 014310 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    S. Ćwiok, P.-H. Heenen, W. Nazarewicz, Nature 433, 705 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    V.E. Viola jr., G.T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966)CrossRefGoogle Scholar
  12. 12.
    T. Dong, Z. Ren, Eur. Phys. J. A 26, 69 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C 89, 054310 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    R. Rodríguez-Guzmán, L.M. Robledo, Eur. Phys. J. A 50, 142 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    R. Rodríguez-Guzmán, L.M. Robledo, Eur. Phys. J. A 52, 12 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    R. Rodríguez-Guzmán, L.M. Robledo, Eur. Phys. J. A 52, 348 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    S.A. Giuliani, L.M. Robledo, Phys. Rev. C 88, 054325 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Warda, L.M. Robledo, Phys. Rev. C 84, 044608 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    I.V. Panov, I.Yu. Korneev, F.-K. Thielemann, Astron. Lett. 34, 189 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    G. Martínez-Pinedo et al., Prog. Part. Nucl. Phys. 59, 199 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Giuliani, G. Martínez-Pinedo, L.M. Robledo, arXiv:1704.00554 [nucl-th] (2017)Google Scholar
  22. 22.
    H.J. Krappe, K. Pomorski, Theory of Nuclear Fission, Lect. Notes Phys. 838 (Springer, Berlin, 2012)Google Scholar
  23. 23.
    P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, M. Mumpower, Phys. Rev. C 91, 024310 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    R. Julin, Nucl. Phys. A 834, 15c (2010)ADSCrossRefGoogle Scholar
  25. 25.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)Google Scholar
  26. 26.
    S.A. Giuliani, L.M. Robledo, R. Rodríguez-Guzmán, Phys. Rev. C 90, 054311 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23c (1984)ADSCrossRefGoogle Scholar
  28. 28.
    J.-P. Delaroche, M. Girod, H. Goutte, J. Libert, Nucl. Phys. A 771, 103 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    N. Dubray, H. Goutte, J.-P. Delaroche, Phys. Rev. C 77, 014310 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    W. Younes, D. Gogny, Phys. Rev. C 80, 054313 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, J. Pei, Phys. Rev. C 83, 034305 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    J.D. McDonnell, W. Nazarewicz, J.A. Sheikh, Phys. Rev. C 87, 054327 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    J. Erler, K. Langanke, H.P. Loens, G. Martínez-Pinedo, P.-G. Reinhard, Phys. Rev. C 85, 025802 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A. Staszczak, A. Baran, W. Nazarewicz, Phys. Rev. C 87, 024320 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    A. Baran, K. Pomorski, A. Lukasiak, A. Sobiczewski, Nucl. Phys. A 361, 83 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    M. Baldo, L.M. Robledo, P. Schuck, X. Viñas, Phys. Rev. C 87, 064305 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    H. Abusara, A.V. Afanasjev, P. Ring, Phys. Rev. C 82, 044303 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    H. Abusara, A.V. Afanasjev, P. Ring, Phys. Rev. C 85, 024314 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    B.-N. Lu, E.-G. Zhao, S.-G. Zhou, Phys. Rev. C 85, 011301 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    S. Karatzikos, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Lett. B 689, 72 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    I. Hamamoto, Phys. Rev. C 79, 014307 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    S. Perez-Martin, L.M. Robledo, Phys. Rev. C 78, 014304 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    L. Bonneau, P. Quentin, P. Möller, Phys. Rev. C 76, 024320 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    T. Duguet, P. Bonche, P.-H. Heenen, J. Meyer, Phys. Rev. C 65, 014310 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, S. Perez-Martin, Phys. Lett. B 691, 202 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, Phys. Rev. C 82, 044318 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, Phys. Rev. C 82, 061302(R) (2010)ADSCrossRefGoogle Scholar
  48. 48.
    R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, Phys. Rev. C 83, 044307 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    N. Schunck et al., Phys. Rev. C 81, 024316 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    P. Olbratowski, J. Dobaczewski, J. Dudek, W. Plóciennik, Phys. Rev. Lett. 93, 052501 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)ADSCrossRefGoogle Scholar
  52. 52.
    L.M. Robledo, G.F. Berstch, Phys. Rev. C 84, 014312 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    N.E. Holden, D.C. Hoffman, Pure Appl. Chem. 72, 1525 (2000)CrossRefGoogle Scholar
  54. 54.
    P. Fong, Phys. Rev. C 122, 1545 (1961)ADSCrossRefGoogle Scholar
  55. 55.
    M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972)ADSCrossRefGoogle Scholar
  56. 56.
    J.F. Berstch, H. Flocard, Phys. Rev. C 43, 2200 (1991)ADSCrossRefGoogle Scholar
  57. 57.
    S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)ADSCrossRefGoogle Scholar
  59. 59.
    R. Rodríguez-Guzmán, L.M. Robledo, P. Sarriguren, Phys. Rev. C 86, 034336 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    L.M. Robledo, R. Rodríguez-Guzmán, J. Phys. G: Nucl. Part. Phys. 39, 105103 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    R. Rodríguez-Guzmán, L.M. Robledo, P. Sarriguren, J.E. García-Ramos, Phys. Rev. C 81, 024310 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    L.M. Robledo, R. Rodríguez-Guzmán, P. Sarriguren, J. Phys. G: Nucl. Part. Phys. 36, 115104 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    M. Gaudin, Nucl. Phys. 15, 89 (1960)CrossRefGoogle Scholar
  64. 64.
    S. Perez-Martin, L.M. Robledo, Phys. Rev. C 76, 064314 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    C. Titin-Schnaider, Ph. Quentin, Phys. Lett. B 49, 213 (1974)ADSCrossRefGoogle Scholar
  66. 66.
    R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Lett. B 474, 15 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Rev. C 62, 054308 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    J.L. Egido, L.M. Robledo, in Extended Density Functionals in Nuclear Physics, edited by G.A. Lalazissis, P. Ring, D. Vretenar, Lecture Notes Phys. 641 (Springer, Berlin, 2004) p. 269Google Scholar
  69. 69.
    M. Baranger, M. Veneroni, Ann. Phys. 114, 123 (1978)ADSCrossRefGoogle Scholar
  70. 70.
    H.M. Sommermann, Ann. Phys. 151, 163 (1983)ADSCrossRefGoogle Scholar
  71. 71.
    P. Ring, L.M. Robledo, J.L. Egido, M. Faber, Nucl. Phys. A 419, 261 (1984)ADSCrossRefGoogle Scholar
  72. 72.
    M. Girod, B. Grammaticos, Nucl. Phys. A 330, 40 (1979)ADSCrossRefGoogle Scholar
  73. 73.
    M.J. Giannoni, P. Quentin, Phys. Rev. C 21, 2060 (1980)ADSCrossRefGoogle Scholar
  74. 74.
    M.J. Giannoni, P. Quentin, Phys. Rev. C 21, 2076 (1980)ADSCrossRefGoogle Scholar
  75. 75.
    J. Libert, M. Girod, J.P. Delaroche, Phys. Rev. C 60, 054301 (1999)ADSCrossRefGoogle Scholar
  76. 76.
    A. Baran, Phys. Lett. B 76, 8 (1978)ADSCrossRefGoogle Scholar
  77. 77.
    A. Baran, J.A. Sheikh, J. Dobaczewski, W. Nazarewicz, A. Staszczak, Phys. Rev. C 84, 054321 (2011)ADSCrossRefGoogle Scholar
  78. 78.
    M. Kowal, J. Skalski, Phys. Rev. C 85, 061302(R) (2012)ADSCrossRefGoogle Scholar
  79. 79.
    P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 87, 044308 (2013)ADSCrossRefGoogle Scholar
  80. 80.
    V.V. Pashkevich, Nucl. Phys. A 169, 275 (1971)ADSCrossRefGoogle Scholar
  81. 81.
    P. Möller, Nucl. Phys. A 192, 529 (1972)ADSCrossRefGoogle Scholar
  82. 82.
    K. Rutz, J. Mahrun, P.-G. Reinhard, W. Greiner, Nucl. Phys. A 590, 680 (1995)ADSCrossRefGoogle Scholar
  83. 83.
    J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 502, 85 (1989)ADSCrossRefGoogle Scholar
  84. 84.
    J. Zhao, B.-N. Lu, D. Vretenar, E.-G. Zhao, S.-G. Zhou, Phys. Rev. C 91, 014321 (2015)ADSCrossRefGoogle Scholar
  85. 85.
    N. Nenoff, P. Bringel, A. Bürger, S. Chmel, S. Dababneh, M. Heil, H. Hübel, F. Käppeler, A. Neusser-Neffgen, R. Plag, Eur. Phys. J. A 32, 165 (2007)ADSCrossRefGoogle Scholar
  86. 86.
    G.M. Ter-Akopian, J.H. Hamilton, Yu.Ts. Oganessian, A.V. Daniel, J. Kormicki, A.V. Ramayya, G.S. Popeko, B.R.S. Babu, Q.-H. Lu, K. Butler-Moore, W.-C. Ma, S. Ćwiok, W. Nazarewicz, J.K. Deng, D. Shi, J. Kliman, M. Morhac, J.D. Cole, R. Aryaeinejad, N.R. Johnson, I.Y. Lee, F.K. McGowan, J.X. Saladin, Phys. Rev. Lett. 77, 32 (1996)ADSCrossRefGoogle Scholar
  87. 87.
    M. Piessens, E. Jacobs, S. Pommé, D.D. Frenne, Nucl. Phys. A 556, 88 (1993)ADSCrossRefGoogle Scholar
  88. 88.
    L. Dematté, C. Wagemans, R. Barthélémy, R. Dhont, A. Deruytter, Nucl. Phys. A 617, 331 (1997)ADSCrossRefGoogle Scholar
  89. 89.
    D.C. Hoffman, M.M. Hoffman, Annu. Rev. Nucl. Sci. 24, 151 (1974)ADSCrossRefGoogle Scholar
  90. 90.
    H. Goutte, J.F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005)ADSCrossRefGoogle Scholar
  91. 91.
    B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)ADSCrossRefGoogle Scholar
  92. 92.
    Brookhaven National Nuclear Data Center, http://www.nndc.bnl.gov/nudat2
  93. 93.
    K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000)ADSCrossRefGoogle Scholar
  94. 94.
    P. Möller, A. Iwamoto, Phys. Rev. C 61, 047602 (2000)ADSCrossRefGoogle Scholar
  95. 95.
    P. Möller, D.G. Madlan, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Physics DepartmentKuwait UniversityKuwaitKuwait
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain
  3. 3.Center for Computational SimulationUniversidad Politécnica de MadridBoadilla del MonteSpain

Personalised recommendations