Three-body unitarity in the finite volume

Regular Article - Theoretical Physics
  • 11 Downloads

Abstract.

The physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativistic \( 3\rightarrow 3\) amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. The corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated.

References

  1. 1.
    F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou arXiv:1705.00141 [hep-ph] (2017)Google Scholar
  2. 2.
    GlueX Collaboration (H. Al Ghoul et al.), Phys. Rev. C 95, 042201 (2017) arXiv:1701.08123 [nucl-ex]ADSCrossRefGoogle Scholar
  3. 3.
    COMPASS Collaboration (M. Alekseev et al.), Phys. Rev. Lett. 104, 241803 (2010) arXiv:0910.5842 [hep-ex]ADSCrossRefGoogle Scholar
  4. 4.
    D.M. Asner et al., Int. J. Mod. Phys. A 24, S1 (2009) arXiv:0809.1869 [hep-ex]CrossRefGoogle Scholar
  5. 5.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    CLAS Collaboration (M. Ripani et al.), Phys. Rev. Lett. 91, 022002 (2003) arXiv:hep-ex/0210054CrossRefGoogle Scholar
  7. 7.
    CBELSA/TAPS Collaboration (V. Sokhoyan et al.), Eur. Phys. J. A 51, 95 (2015) 51CrossRefGoogle Scholar
  8. 8.
    GDH, A2 Collaborations (J. Ahrens et al.), Phys. Lett. B 551, 49 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lüscher, Commun. Math. Phys. 105, 153 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    M. Lüscher, Nucl. Phys. B 354, 531 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    D.R. Bolton, R.A. Briceño, D.J. Wilson, Phys. Lett. B 757, 50 (2016) arXiv:1507.07928 [hep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    B. Hu, R. Molina, M. Döring, M. Mai, A. Alexandru, Phys. Rev. D 96, 034520 (2017) arXiv:1704.06248 [hep-ph]ADSCrossRefGoogle Scholar
  13. 13.
    M. Döring, B. Hu, M. Mai, arXiv:1610.10070 [hep-lat] (2016)Google Scholar
  14. 14.
    Z.-H. Guo, L. Liu, U.-G. Meißner, J.A. Oller, A. Rusetsky, Phys. Rev. D 95, 054004 (2017) arXiv:1609.08096 [hep-ph]ADSCrossRefGoogle Scholar
  15. 15.
    B. Hu, R. Molina, M. Döring, A. Alexandru, Phys. Rev. Lett. 117, 122001 (2016) arXiv:1605.04823 [hep-lat]ADSCrossRefGoogle Scholar
  16. 16.
    D. Guo, A. Alexandru, R. Molina, M. Döring, Phys. Rev. D 94, 034501 (2016) arXiv:1605.03993 [hep-lat]ADSCrossRefGoogle Scholar
  17. 17.
    R.A. Briceño, J.J. Dudek, R.D. Young, arXiv:1706.06223 [nucl-th] (2017)Google Scholar
  18. 18.
    Z.-W. Liu, J.M.M. Hall, D.B. Leinweber, A.W. Thomas, J.-J. Wu, Phys. Rev. D 95, 014506 (2017) arXiv:1607.05856 [nucl-th]ADSCrossRefGoogle Scholar
  19. 19.
    J.-J. Wu, H. Kamano, T.-S.H. Lee, D.B. Leinweber, A.W. Thomas, Phys. Rev. D 95, 114507 (2017) arXiv:1611.05970 [hep-lat]ADSCrossRefGoogle Scholar
  20. 20.
    A. Agadjanov, V. Bernard, U.-G. Meißner, A. Rusetsky, Nucl. Phys. B 910, 387 (2016) arXiv:1605.03386 [hep-lat]ADSCrossRefGoogle Scholar
  21. 21.
    HAL QCD Collaboration (K. Sasaki, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, K. Murano), Prog. Theor. Exp. Phys. 2015, 113B01 (2015) arXiv:1504.01717 [hep-lat]CrossRefGoogle Scholar
  22. 22.
    J.M.M. Hall, W. Kamleh, D.B. Leinweber, B.J. Menadue, B.J. Owen, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 114, 132002 (2015) arXiv:1411.3402 [hep-lat]ADSCrossRefGoogle Scholar
  23. 23.
    R. Molina, M. Döring, Phys. Rev. D 94, 056010 (2016) 94ADSCrossRefGoogle Scholar
  24. 24.
    A. Martínez Torres, M. Bayar, D. Jido, E. Oset, Phys. Rev. C 86, 055201 (2012) arXiv:1202.4297 [hep-lat]ADSCrossRefGoogle Scholar
  25. 25.
    R.A. Briceño, M.T. Hansen, Phys. Rev. D 94, 013008 (2016) arXiv:1509.08507 [hep-lat]ADSCrossRefGoogle Scholar
  26. 26.
    R.A. Briceño, M.T. Hansen, Phys. Rev. D 92, 074509 (2015) arXiv:1502.04314 [hep-lat]ADSCrossRefGoogle Scholar
  27. 27.
    R.A. Briceño, M.T. Hansen, A. Walker-Loud, Phys. Rev. D 91, 034501 (2015) arXiv:1406.5965 [hep-lat]ADSCrossRefGoogle Scholar
  28. 28.
    R.A. Briceño, Phys. Rev. D 89, 074507 (2014) arXiv:1401.3312 [hep-lat]ADSCrossRefGoogle Scholar
  29. 29.
    A. Martínez Torres, E. Oset, S. Prelovsek, A. Ramos, JHEP 05, 153 (2015) arXiv:1412.1706 [hep-lat]ADSCrossRefGoogle Scholar
  30. 30.
    J.-J. Wu, T.-S.H. Lee, A.W. Thomas, R.D. Young, Phys. Rev. C 90, 055206 (2014) arXiv:1402.4868 [hep-lat]ADSCrossRefGoogle Scholar
  31. 31.
    M. Döring, M. Mai, U.-G. Meißner, Phys. Lett. B 722, 185 (2013) arXiv:1302.4065 [hep-lat]ADSCrossRefGoogle Scholar
  32. 32.
    N. Li, S.-Y. Li, C. Liu, Phys. Rev. D 90, 034509 (2014) arXiv:1401.5569 [hep-lat]ADSCrossRefGoogle Scholar
  33. 33.
    R.A. Briceño, Z. Davoudi, Phys. Rev. D 88, 094507 (2013) arXiv:1204.1110 [hep-lat]ADSCrossRefGoogle Scholar
  34. 34.
    M.T. Hansen, S.R. Sharpe, Phys. Rev. D 86, 016007 (2012) arXiv:1204.0826 [hep-lat]ADSCrossRefGoogle Scholar
  35. 35.
    P. Guo, J. Dudek, R. Edwards, A.P. Szczepaniak, Phys. Rev. D 88, 014501 (2013) arXiv:1211.0929 [hep-lat]ADSCrossRefGoogle Scholar
  36. 36.
    M. Döring, U.-G. Meißner, E. Oset, A. Rusetsky, Eur. Phys. J. A 48, 114 (2012) arXiv:1205.4838 [hep-lat]ADSCrossRefGoogle Scholar
  37. 37.
    M. Döring, U.-G. Meißner, E. Oset, A. Rusetsky, Eur. Phys. J. A 47, 139 (2011) arXiv:1107.3988 [hep-lat]ADSCrossRefGoogle Scholar
  38. 38.
    M. Döring, U.-G. Meißner, JHEP 01, 009 (2012) arXiv:1111.0616 [hep-lat]CrossRefGoogle Scholar
  39. 39.
    M. Döring, J. Haidenbauer, U.-G. Meißner, A. Rusetsky, Eur. Phys. J. A 47, 163 (2011) arXiv:1108.0676 [hep-lat]ADSCrossRefGoogle Scholar
  40. 40.
    V. Bernard, M. Lage, U.-G. Meißner, A. Rusetsky, JHEP 01, 019 (2011) arXiv:1010.6018 [hep-lat]ADSCrossRefGoogle Scholar
  41. 41.
    M. Lage, U.-G. Meißner, A. Rusetsky, Phys. Lett. B 681, 439 (2009) arXiv:0905.0069 [hep-lat]ADSCrossRefGoogle Scholar
  42. 42.
    C. Liu, X. Feng, S. He, Int. J. Mod. Phys. A 21, 847 (2006) arXiv:hep-lat/0508022ADSCrossRefGoogle Scholar
  43. 43.
    S. He, X. Feng, C. Liu, JHEP 07, 011 (2005) arXiv:hep-lat/0504019ADSCrossRefGoogle Scholar
  44. 44.
    R.A. Briceño, J.J. Dudek, R.G. Edwards, D.J. Wilson, arXiv:1708.06667 [hep-lat] (2017)Google Scholar
  45. 45.
    R.A. Briceño, J.J. Dudek, R.G. Edwards, D.J. Wilson, Phys. Rev. Lett. 118, 022002 (2017) arXiv:1607.05900 [hep-ph]ADSCrossRefGoogle Scholar
  46. 46.
    G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas, D.J. Wilson, JHEP 10, 011 (2016) arXiv:1607.07093 [hep-lat]ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Wilson, R.A. Briceño, J.J. Dudek, R.G. Edwards, C.E. Thomas, Phys. Rev. D 92, 094502 (2015) arXiv:1507.02599 [hep-ph]ADSCrossRefGoogle Scholar
  48. 48.
    M. Mai, B. Hu, M. Döring, A. Pilloni, A. Szczepaniak, Eur. Phys. J. A 53, 177 (2017) arXiv:1706.06118 [nucl-th]ADSCrossRefGoogle Scholar
  49. 49.
    P. Guo, V. Gasparian, arXiv:1709.08255 [hep-lat] (2017)Google Scholar
  50. 50.
    S.R. Sharpe, Phys. Rev. D 96, 054515 (2017) arXiv:1707.04279 [hep-lat]ADSCrossRefGoogle Scholar
  51. 51.
    H.-W. Hammer, J.-Y. Pang, A. Rusetsky, JHEP 10, 115 (2017) arXiv:1707.02176 [hep-lat]ADSCrossRefGoogle Scholar
  52. 52.
    H.-W. Hammer, J.-Y. Pang, A. Rusetsky, JHEP 09, 109 (2017) arXiv:1706.07700 [hep-lat]ADSCrossRefGoogle Scholar
  53. 53.
    M.T. Hansen, H.B. Meyer, D. Robaina, arXiv:1704.08993 [hep-lat] (2017)Google Scholar
  54. 54.
    P. Guo, V. Gasparian, Phys. Lett. B 774, 441 (2017) arXiv:1701.00438 [hep-lat]ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    P. Guo, Phys. Rev. D 95, 054508 (2017) arXiv:1607.03184 [hep-lat]ADSCrossRefGoogle Scholar
  56. 56.
    D. Agadjanov, M. Döring, M. Mai, U.-G. Meißner, A. Rusetsky, JHEP 06, 043 (2016) arXiv:1603.07205 [hep-lat]ADSCrossRefGoogle Scholar
  57. 57.
    M.T. Hansen, S.R. Sharpe, Phys. Rev. D 95, 034501 (2017) arXiv:1609.04317 [hep-lat]ADSCrossRefGoogle Scholar
  58. 58.
    M.T. Hansen, S.R. Sharpe, Phys. Rev. D 93, 096006 (2016) 96ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    M. Jansen, H.W. Hammer, Y. Jia, Phys. Rev. D 92, 114031 (2015) arXiv:1505.04099 [hep-ph]ADSCrossRefGoogle Scholar
  60. 60.
    M.T. Hansen, S.R. Sharpe, Phys. Rev. D 93, 014506 (2016) arXiv:1509.07929 [hep-lat]ADSCrossRefGoogle Scholar
  61. 61.
    M.T. Hansen, S.R. Sharpe, Phys. Rev. D 92, 114509 (2015) arXiv:1504.04248 [hep-lat]ADSCrossRefGoogle Scholar
  62. 62.
    U.-G. Meißner, G. Ríos, A. Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) 117ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    M.T. Hansen, S.R. Sharpe, Phys. Rev. D 90, 116003 (2014) arXiv:1408.5933 [hep-lat]ADSCrossRefGoogle Scholar
  64. 64.
    R.A. Briceño, Z. Davoudi, T.C. Luu, J. Phys. G 42, 023101 (2015) arXiv:1406.5673 [hep-lat]ADSCrossRefGoogle Scholar
  65. 65.
    S. Aoki, N. Ishii, T. Doi, Y. Ikeda, T. Inoue, Phys. Rev. D 88, 014036 (2013) arXiv:1303.2210 [hep-lat]ADSCrossRefGoogle Scholar
  66. 66.
    R.A. Briceño, Z. Davoudi, Phys. Rev. D 87, 094507 (2013) arXiv:1212.3398 [hep-lat]ADSCrossRefGoogle Scholar
  67. 67.
    S. Bour, H.-W. Hammer, D. Lee, U.-G. Meißner, Phys. Rev. C 86, 034003 (2012) arXiv:1206.1765 [nucl-th]ADSCrossRefGoogle Scholar
  68. 68.
    S. Kreuzer, H.W. Grießhammer, Eur. Phys. J. A 48, 93 (2012) arXiv:1205.0277 [nucl-th]ADSCrossRefGoogle Scholar
  69. 69.
    L. Roca, E. Oset, Phys. Rev. D 85, 054507 (2012) arXiv:1201.0438 [hep-lat]ADSCrossRefGoogle Scholar
  70. 70.
    K. Polejaeva, A. Rusetsky, Eur. Phys. J. A 48, 67 (2012) arXiv:1203.1241 [hep-lat]ADSCrossRefGoogle Scholar
  71. 71.
    S. Kreuzer, H.W. Hammer, Phys. Lett. B 694, 424 (2011) arXiv:1008.4499 [hep-lat]ADSCrossRefGoogle Scholar
  72. 72.
    S. Kreuzer, H.W. Hammer, Eur. Phys. J. A 43, 229 (2010) arXiv:0910.2191 [nucl-th]ADSCrossRefGoogle Scholar
  73. 73.
    S. Kreuzer, H.W. Hammer, Phys. Lett. B 673, 260 (2009) arXiv:0811.0159 [nucl-th]ADSCrossRefGoogle Scholar
  74. 74.
    R.A. Briceño, M.T. Hansen, S.R. Sharpe, Phys. Rev. D 95, 074510 (2017) arXiv:1701.07465 [hep-lat]ADSCrossRefGoogle Scholar
  75. 75.
    J.-J. Wu, D.B. Leinweber, Z.-W. Liu, A.W. Thomas, arXiv:1703.10715 [nucl-th] (2017)Google Scholar
  76. 76.
    Z.-W. Liu, W. Kamleh, D.B. Leinweber, F.M. Stokes, A.W. Thomas, J.-J. Wu, Phys. Rev. D 95, 034034 (2017) arXiv:1607.04536 [nucl-th]ADSCrossRefGoogle Scholar
  77. 77.
    P. Guo, arXiv:1303.3349 [hep-lat] (2013)Google Scholar
  78. 78.
    C.B. Lang, L. Leskovec, M. Padmanath, S. Prelovsek, Phys. Rev. D 95, 014510 (2017) arXiv:1610.01422 [hep-lat]ADSCrossRefGoogle Scholar
  79. 79.
    C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, JHEP 04, 162 (2014) arXiv:1401.2088 [hep-lat]ADSCrossRefGoogle Scholar
  80. 80.
    A.L. Kiratidis, W. Kamleh, D.B. Leinweber, Z.-W. Liu, F.M. Stokes, A.W. Thomas, Phys. Rev. D 95, 074507 (2017) arXiv:1608.03051 [hep-lat]ADSCrossRefGoogle Scholar
  81. 81.
    P.F. Bedaque, H.W. Grießhammer, Nucl. Phys. A 671, 357 (2000) arXiv:nucl-th/9907077ADSCrossRefGoogle Scholar
  82. 82.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Nucl. Phys. A 829, 170 (2009) arXiv:0903.4337 [nucl-th]ADSCrossRefGoogle Scholar
  83. 83.
    V. Bernard, M. Lage, U.-G. Meißner, A. Rusetsky, JHEP 08, 024 (2008) arXiv:0806.4495 [hep-lat]ADSCrossRefGoogle Scholar
  84. 84.
    M. Döring, H.-W. Hammer, M. Mai, J.-Y. Pang, A. Rusetsky, in preparationGoogle Scholar
  85. 85.
    C.B. Lang, D. Mohler, S. Prelovsek, M. Vidmar, Phys. Rev. D 84, 054503 (2011) 89ADSCrossRefGoogle Scholar
  86. 86.
    J. Landay, M. Döring, C. Fernández-Ramírez, B. Hu, R. Molina, Phys. Rev. C 95, 015203 (2017) arXiv:1610.07547 [nucl-th]ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.The George Washington UniversityWashingtonUSA
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsUSA

Personalised recommendations