Hot origin of the Little Bang

Regular Article - Theoretical Physics
  • 11 Downloads

Abstract.

Ultrarelativistic heavy ion collisions produce a quark-gluon matter which lies in the future light cone originating from given points on the t = z = 0 plane of the Minkowski spacetime manifold. We show that in a weak coupling regime the Minkowski vacuum of massless fields presents itself in the “Little Bang” region as a thermal state of low \( p_{T}\) particles, in close analogy to the Unruh effect for uniformly accelerated observers which are causally restricted to a Rindler wedge. It can shed some light on the mechanisms of early time thermalization in ultrarelativistic heavy ion collisions.

References

  1. 1.
    F. Gelis, Int. J. Mod. Phys. E 24, 1530008 (2015) arXiv:1508.07974ADSCrossRefGoogle Scholar
  2. 2.
    K. Fukushima, Rep. Prog. Phys. 80, 022301 (2017) arXiv:1603.02340ADSCrossRefGoogle Scholar
  3. 3.
    P. Braun-Munzinger, V. Koch, T. Schäfer, J. Stachel, Phys. Rep. 621, 76 (2016) arXiv:1510.00442ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013) arXiv:1301.2826ADSCrossRefGoogle Scholar
  5. 5.
    C. Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013) arXiv:1301.5893ADSCrossRefGoogle Scholar
  6. 6.
    P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013) arXiv:1311.1849ADSCrossRefGoogle Scholar
  7. 7.
    R. Derradi de Souza, T. Koide, T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016) arXiv:1506.03863ADSCrossRefGoogle Scholar
  8. 8.
    J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Phys. Rev. D 89, 114007 (2014) arXiv:1311.3005ADSCrossRefGoogle Scholar
  9. 9.
    J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Phys. Rev. D 92, 096006 (2015) arXiv:1508.03073ADSCrossRefGoogle Scholar
  10. 10.
    A. Kurkela, Nucl. Phys. A 956, 136 (2016) arXiv:1601.03283ADSCrossRefGoogle Scholar
  11. 11.
    W. van der Schee, Nucl. Phys. A 967, 74 (2017) arXiv:1705.01556CrossRefGoogle Scholar
  12. 12.
    P. Romatschke, Eur. Phys. J. C 77, 21 (2017) arXiv:1609.02820ADSCrossRefGoogle Scholar
  13. 13.
    U. Heinz, J. Phys.: Conf. Ser. 455, 012044 (2013) arXiv:1304.3634Google Scholar
  14. 14.
    S. Floerchinger, Nucl. Phys. A 956, 91 (2016) arXiv:1512.08388ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)Google Scholar
  17. 17.
    S. Jeon, T. Epelbaum, Ann. Phys. 364, 1 (2016) arXiv:1506.00672ADSCrossRefGoogle Scholar
  18. 18.
    W.G. Unruh, Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    S. Takagi, Prog. Theor. Phys. Suppl. 88, 1 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008) arXiv:0710.5373ADSCrossRefGoogle Scholar
  21. 21.
    N.B. Narozhny, A.M. Fedotov, B.M. Karnakov, V.D. Mur, V.A. Belinskii, Phys. Rev. D 65, 025004 (2002)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    S.A. Fulling, W.G. Unruh, Phys. Rev. D 70, 048701 (2004)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    N.B. Narozhny, A.M. Fedotov, B.M. Karnakov, V.D. Mur, V.A. Belinskii, Phys. Rev. D 70, 048702 (2004)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    D.C.M. Ostapchuk, S.Y. Lin, R.B. Mann, B.L. Hu, JHEP 07, 72 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J. Doukas, S.Y. Lin, B.L. Hu, R.B. Mann, JHEP 11, 119 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    W.G. Unruh, R.M. Wald, Phys. Rev. D 29, 1047 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    S.J. Olson, T.C. Ralph, Phys. Rev. Lett. 106, 110404 (2011) arXiv:1003.0720ADSCrossRefGoogle Scholar
  28. 28.
    P. Martinetti, C. Rovelli, Class. Quantum Grav. 20, 4919 (2003) arXiv:gr-qc/0212074ADSCrossRefGoogle Scholar
  29. 29.
    D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    D. Kharzeev, Nucl. Phys. A 774, 315 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    D. Kharzeev, E. Levin, K. Tuchin, Phys. Rev. C 75, 044903 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    P. Castorina, D. Kharzeev, H. Satz, Eur. Phys. J. C 52, 187 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    F. Becattini, P. Castorina, J. Manninen, H. Satz, Eur. Phys. J. C 56, 493 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    P. Castorina, H. Satz, Adv. High Energy Phys. 2014, 376982 (2014)CrossRefGoogle Scholar
  35. 35.
    P. Castorina, A. Iorio, H. Satz, Int. J. Mod. Phys. E 24, 1550056 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    W.G. Unruh, N. Weiss, Phys. Rev. D 29, 1656 (1984)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    C.W. Bernard, Phys. Rev. D 9, 3312 (1974)ADSCrossRefGoogle Scholar
  38. 38.
    N.P. Landsman, Ch.G. van Weert, Phys. Rep. 145, 141 (1987)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J.I. Kapusta, C. Gale, Finite-Temperature Field Theory Principles and Applications (Cambridge University Press, Cambridge, 2006)Google Scholar
  40. 40.
    F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Annu. Rev. Nucl. Part. Sci. 60, 463 (2010) arXiv:1002.0333ADSCrossRefGoogle Scholar
  41. 41.
    Jean-Paul Blaizot, Rep. Prog. Phys. 80, 032301 (2017) arXiv:1607.04448ADSCrossRefGoogle Scholar
  42. 42.
    T. Lappi, L. McLerran, Nucl. Phys. A 772, 200 (2006) arXiv:hep-ph/0602189ADSCrossRefGoogle Scholar
  43. 43.
    R. Baier, A.H. Mueller, D. Schiff, D.T. Son, Phys. Lett. B 502, 51 (2001) arXiv:hep-ph/0009237ADSCrossRefGoogle Scholar
  44. 44.
    C. Shen, Nucl. Phys. A 956, 184 (2016) arXiv:1601.02563ADSCrossRefGoogle Scholar
  45. 45.
    J. Berges, K. Reygers, N. Tanji, R. Venugopalan, Nucl. Phys. A 967, 708 (2017) arXiv:1704.04032CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Bogolyubov Institute for Theoretical PhysicsKievUkraine
  2. 2.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  3. 3.ExtreMe Matter Institute EMMIGSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany

Personalised recommendations