Skip to main content
Log in

Hot origin of the Little Bang

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Ultrarelativistic heavy ion collisions produce a quark-gluon matter which lies in the future light cone originating from given points on the t = z = 0 plane of the Minkowski spacetime manifold. We show that in a weak coupling regime the Minkowski vacuum of massless fields presents itself in the “Little Bang” region as a thermal state of low \( p_{T}\) particles, in close analogy to the Unruh effect for uniformly accelerated observers which are causally restricted to a Rindler wedge. It can shed some light on the mechanisms of early time thermalization in ultrarelativistic heavy ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Gelis, Int. J. Mod. Phys. E 24, 1530008 (2015) arXiv:1508.07974

    Article  ADS  Google Scholar 

  2. K. Fukushima, Rep. Prog. Phys. 80, 022301 (2017) arXiv:1603.02340

    Article  ADS  Google Scholar 

  3. P. Braun-Munzinger, V. Koch, T. Schäfer, J. Stachel, Phys. Rep. 621, 76 (2016) arXiv:1510.00442

    Article  ADS  MathSciNet  Google Scholar 

  4. U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013) arXiv:1301.2826

    Article  ADS  Google Scholar 

  5. C. Gale, S. Jeon, B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013) arXiv:1301.5893

    Article  ADS  Google Scholar 

  6. P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013) arXiv:1311.1849

    Article  ADS  Google Scholar 

  7. R. Derradi de Souza, T. Koide, T. Kodama, Prog. Part. Nucl. Phys. 86, 35 (2016) arXiv:1506.03863

    Article  ADS  Google Scholar 

  8. J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Phys. Rev. D 89, 114007 (2014) arXiv:1311.3005

    Article  ADS  Google Scholar 

  9. J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Phys. Rev. D 92, 096006 (2015) arXiv:1508.03073

    Article  ADS  Google Scholar 

  10. A. Kurkela, Nucl. Phys. A 956, 136 (2016) arXiv:1601.03283

    Article  ADS  Google Scholar 

  11. W. van der Schee, Nucl. Phys. A 967, 74 (2017) arXiv:1705.01556

    Article  Google Scholar 

  12. P. Romatschke, Eur. Phys. J. C 77, 21 (2017) arXiv:1609.02820

    Article  ADS  Google Scholar 

  13. U. Heinz, J. Phys.: Conf. Ser. 455, 012044 (2013) arXiv:1304.3634

    Google Scholar 

  14. S. Floerchinger, Nucl. Phys. A 956, 91 (2016) arXiv:1512.08388

    Article  ADS  Google Scholar 

  15. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  16. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

  17. S. Jeon, T. Epelbaum, Ann. Phys. 364, 1 (2016) arXiv:1506.00672

    Article  ADS  Google Scholar 

  18. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  19. S. Takagi, Prog. Theor. Phys. Suppl. 88, 1 (1986)

    Article  ADS  Google Scholar 

  20. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008) arXiv:0710.5373

    Article  ADS  Google Scholar 

  21. N.B. Narozhny, A.M. Fedotov, B.M. Karnakov, V.D. Mur, V.A. Belinskii, Phys. Rev. D 65, 025004 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. S.A. Fulling, W.G. Unruh, Phys. Rev. D 70, 048701 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. N.B. Narozhny, A.M. Fedotov, B.M. Karnakov, V.D. Mur, V.A. Belinskii, Phys. Rev. D 70, 048702 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. D.C.M. Ostapchuk, S.Y. Lin, R.B. Mann, B.L. Hu, JHEP 07, 72 (2012)

    Article  ADS  Google Scholar 

  25. J. Doukas, S.Y. Lin, B.L. Hu, R.B. Mann, JHEP 11, 119 (2013)

    Article  ADS  Google Scholar 

  26. W.G. Unruh, R.M. Wald, Phys. Rev. D 29, 1047 (1984)

    Article  ADS  Google Scholar 

  27. S.J. Olson, T.C. Ralph, Phys. Rev. Lett. 106, 110404 (2011) arXiv:1003.0720

    Article  ADS  Google Scholar 

  28. P. Martinetti, C. Rovelli, Class. Quantum Grav. 20, 4919 (2003) arXiv:gr-qc/0212074

    Article  ADS  Google Scholar 

  29. D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005)

    Article  ADS  Google Scholar 

  30. D. Kharzeev, Nucl. Phys. A 774, 315 (2006)

    Article  ADS  Google Scholar 

  31. D. Kharzeev, E. Levin, K. Tuchin, Phys. Rev. C 75, 044903 (2007)

    Article  ADS  Google Scholar 

  32. P. Castorina, D. Kharzeev, H. Satz, Eur. Phys. J. C 52, 187 (2007)

    Article  ADS  Google Scholar 

  33. F. Becattini, P. Castorina, J. Manninen, H. Satz, Eur. Phys. J. C 56, 493 (2008)

    Article  ADS  Google Scholar 

  34. P. Castorina, H. Satz, Adv. High Energy Phys. 2014, 376982 (2014)

    Article  Google Scholar 

  35. P. Castorina, A. Iorio, H. Satz, Int. J. Mod. Phys. E 24, 1550056 (2015)

    Article  ADS  Google Scholar 

  36. W.G. Unruh, N. Weiss, Phys. Rev. D 29, 1656 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  37. C.W. Bernard, Phys. Rev. D 9, 3312 (1974)

    Article  ADS  Google Scholar 

  38. N.P. Landsman, Ch.G. van Weert, Phys. Rep. 145, 141 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory Principles and Applications (Cambridge University Press, Cambridge, 2006)

  40. F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Annu. Rev. Nucl. Part. Sci. 60, 463 (2010) arXiv:1002.0333

    Article  ADS  Google Scholar 

  41. Jean-Paul Blaizot, Rep. Prog. Phys. 80, 032301 (2017) arXiv:1607.04448

    Article  ADS  Google Scholar 

  42. T. Lappi, L. McLerran, Nucl. Phys. A 772, 200 (2006) arXiv:hep-ph/0602189

    Article  ADS  Google Scholar 

  43. R. Baier, A.H. Mueller, D. Schiff, D.T. Son, Phys. Lett. B 502, 51 (2001) arXiv:hep-ph/0009237

    Article  ADS  Google Scholar 

  44. C. Shen, Nucl. Phys. A 956, 184 (2016) arXiv:1601.02563

    Article  ADS  Google Scholar 

  45. J. Berges, K. Reygers, N. Tanji, R. Venugopalan, Nucl. Phys. A 967, 708 (2017) arXiv:1704.04032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Akkelin.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkelin, S.V. Hot origin of the Little Bang. Eur. Phys. J. A 53, 232 (2017). https://doi.org/10.1140/epja/i2017-12432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12432-1

Navigation