Revisiting directed flow in relativistic heavy-ion collisions from a multiphase transport model

Regular Article - Theoretical Physics

Abstract.

We have revisited several interesting questions on how the rapidity-odd directed flow is developed in relativistic 197Au+197Au collisions at \( \sqrt{s_{NN}} = 200\) and 39 GeV based on a multiphase transport model. As the partonic phase evolves with time, the slope of the parton directed flow at midrapidity region changes from negative to positive as a result of the later dynamics at 200 GeV, while it remains negative at 39 GeV due to the shorter life time of the partonic phase. The directed flow splitting for various quark species due to their different initial eccentricities is observed at 39 GeV, while the splitting is very small at 200GeV. From a dynamical coalescence algorithm with Wigner functions, we found that the directed flow of hadrons is a result of competition between the coalescence in momentum and coordinate space as well as further modifications by the hadronic rescatterings.

References

  1. 1.
    PHOBOS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)CrossRefGoogle Scholar
  2. 2.
    BRAHMS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S. Singha et al., Adv. High Energy Phys. 16, 2836989 (2016)Google Scholar
  6. 6.
    D. Teaney, L. Yan, Phys. Rev. C 83, 064904 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M. Luzum, J.Y. Ollitrault, Phys. Rev. Lett. 106, 102301 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 112, 162301 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    J. Steinheimer et al., Phys. Rev. C 89, 054913 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    V.P. Konchakovski et al., Phys. Rev. C 90, 014903 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Nara et al., Phys. Rev. C 94, 034906 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Nara, H. Niemi, J. Steinheimer, H. Stöcker, Phys. Lett. B 769, 543 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Yu.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024915 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    P. Batyuk, D. Blaschke, M. Bleicher, Yu.B. Ivanov, Iu. Karpenko, S. Merts, M. Nahrgang, H. Petersen, O. Rogachevsky, Phys. Rev. C 94, 044917 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    J.Y. Chen, J.X. Zuo, X.Z. Cai, F. Liu, Y.G. Ma, A.H. Tang, Phys. Rev. C 81, 014904 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    B. Zhang, Comput. Phys. Commun. 109, 193 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    V. Greco, C.M. Ko, P. Levai, Phys. Rev. Lett. 90, 202302 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    V. Greco, C.M. Ko, P. Levai, Phys. Rev. C 68, 034904 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    H. Liu, S. Panitkin, N. Xu, Phys. Rev. C 59, 348 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 97, 012301 (2006)CrossRefGoogle Scholar
  24. 24.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 101, 252301 (2008)CrossRefGoogle Scholar
  25. 25.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 110, 142301 (2013)CrossRefGoogle Scholar
  26. 26.
    J.C. Dunlop, M.A. Lisa, P. Sorensen, Phys. Rev. C 84, 044914 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Guo, F. Liu, A.H. Tang, Phys. Rev. C 86, 044901 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    R.A. Lacey et al., Phys. Rev. C 83, 044902 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    H. Petersen, G.Y. Qin, S.A. Bass, B. Müller, Phys. Rev. C 82, 041901(R) (2010)ADSCrossRefGoogle Scholar
  31. 31.
    R.J.M. Snellings, H. Sorge, S.A. Voloshin, F.Q. Wang, N. Xu, Phys. Rev. Lett. 84, 2803 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    C.M. Ko, T. Song, F. Li, V. Greco, S. Plumari, Nucl. Phys. A 928, 234 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    P.F. Kolb et al., Phys. Rev. C 69, 051901(R) (2004)ADSCrossRefGoogle Scholar
  34. 34.
    J.Y. Jia, C. Zhang, Phys. Rev. C 75, 031901(R) (2007)ADSCrossRefGoogle Scholar
  35. 35.
    STAR Collaboration (L. Adamczyk), arXiv:1708.07132 [hep-ex]. Google Scholar
  36. 36.
    H. Stöcker, Nucl. Phys. A 750, 121 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    J. Brachmann et al., Phys. Rev. C 61, 024909 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    L.P. Csernai, D. Röhrich, Phys. Lett. B 458, 454 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    J. Xu, T. Song, C.M. Ko, F. Li, Phys. Rev. Lett. 112, 012301 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    J. Xu, C.M. Ko, Phys. Rev. C 94, 054909 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Particle Data Group Collaboration (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations