Event patterns extracted from anisotropic spectra of charged particles produced in Pb-Pb collisions at 2.76 TeV

Regular Article - Theoretical Physics
  • 14 Downloads

Abstract.

Event patterns extracted from anisotropic spectra of charged particles produced in lead-lead collisions at 2.76 TeV are investigated. We use an inverse power-law resulted from the QCD calculus to describe the transverse momentum spectrum in the hard scattering process, and a revised Erlang distribution resulted from a multisource thermal model to describe the transverse momentum spectrum and anisotropic flow in the soft excitation process. The pseudorapidity distribution is described by a three-Gaussian function which is a revision of the Landau hydrodynamic model. Thus, the event patterns at the kinetic freeze-out are displayed by the scatter plots of the considered particles in the three-dimensional velocity, momentum, and rapidity spaces.

References

  1. 1.
    UA1 Collaboration (G. Arnison et al.), Phys. Lett. B 118, 167 (1982)CrossRefGoogle Scholar
  2. 2.
    R. Odorico, Phys. Lett. B 118, 151 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    T. Mizoguchi, M. Biyajima, N. Suzuki, Int. J. Mod. Phys. A 32, 1750057 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 834, 237c (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Uddin, J.S. Ahmad, W. Bashir, R.A. Bhat, J. Phys. G 39, 015012 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    R.P. Adak, S. Das, S.K. Ghosh, R. Ray, S. Samanta, Phys. Rev. C 96, 014902 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    P. Carruthers, M. Doung-van, Phys. Rev. D 8, 859 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 88, 202301 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    M. Murray for the BRAHMS Collaboration, J. Phys. G. 30, S667 (2004)CrossRefGoogle Scholar
  11. 11.
    BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 94, 162301 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    M. Murray for the BRAHMS Collaboration, J. Phys. G 35, 044015 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    C.-Y. Wong, Phys. Rev. C 78, 054902 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    E.K.G. Sarkisyan, A.S. Sakharov, AIP Conf. Proc. 828, 35 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 70, 533 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 93, 054046 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Z.J. Jiang, H.P. Deng, Y. Zhang, H.L. Zhang, Nucl. Phys. Rev. (China) 32, 398 (2015)Google Scholar
  18. 18.
    Z.J. Jiang, H.L. Zhang, Mod. Phys. Lett. A 29, 1450130 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Z.J. Jiang, Y. Zhang, H.L. Zhang, H.P. Deng, Nucl. Phys. A 941, 188 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Y.-H. Chen, G.-X. Zhang, F.-H. Liu, Adv. High Energy Phys. 2015, 614090 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.-H. Chen, F.-H. Liu, R.A. Lacey, Adv. High Energy Phys. 2016, 9876253 (2016)CrossRefGoogle Scholar
  22. 22.
    Y.-H. Chen, F.-H. Liu, S. Fakhraddin, M.A. Rahim, M.-Y. Duan, J. Phys. G 44, 025103 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Y.-H. Chen, F.-H. Liu, R.A. Lacey, arXiv:1611.10150 [hep-ph] (2016)Google Scholar
  24. 24.
    F.-H. Liu, Y.-Q. Gao, T. Tian, B.-C. Li, Eur. Phys. J. A 50, 94 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 720, 52 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252302 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 034913 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    ALICE Collaboration (B. Abelev et al.), JHEP 06, 190 (2015)ADSGoogle Scholar
  29. 29.
    ALICE Collaboration (J. Adam et al.), Phys. Lett. B 754, 373 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    ALICE Collaboration (E. Abbas et al.), Phys. Lett. B 726, 610 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 106, 032301 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    L.D. Landau, Izv. Akad. Nauk SSSR: Ser. Fiz. 17, 51 (1953) English translation in Collected Papers of L.D. LandauGoogle Scholar
  33. 33.
    S.Z. Belenkij, L.D. Landau, Sov. Phys. Usp. 56, 309 (1955) shortened English translation in Nuovo Cimento Suppl. 3S10Google Scholar
  34. 34.
    ATLAS Collaboration (G. Aad et al.), Phys. Lett. B 707, 330 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    ATLAS Collaboration (G. Aad et al.), Eur. Phys. J. C 74, 3157 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. C 89, 044906 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    S.E. Park on behalf of the CMS Collaboration, Nucl. Phys. A 967, 345 (2017)CrossRefGoogle Scholar
  38. 38.
    NA61/SHINE Collaboration (N. Abgrall et al.), Eur. Phys. J. C 74, 2794 (2014)CrossRefGoogle Scholar
  39. 39.
    M. Mackowiak-Pawlowska for the NA61/SHINE Collaboration, arXiv:1707.04735 [nucl-ex] (2017) presented at Excited QCD 2017, Sintra, Portugal, 7-13 May 2017Google Scholar
  40. 40.
    S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Adv. High Energy Phys. 2015, 349013 (2015)CrossRefGoogle Scholar
  41. 41.
    L.-S. Liu, T.-C. Meng, Phys. Rev. D 27, 2640 (1983)ADSGoogle Scholar
  42. 42.
    K.-C. Chou, L.-S. Liu, T.-C. Meng, Phys. Rev. D 28, 1080 (1983)CrossRefGoogle Scholar
  43. 43.
    Y.B. Ivanov, Phys. Lett. B 721, 123 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Y.B. Ivanov, Phys. Rev. C 87, 064904 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Y.B. Ivanov, D. Blaschke, Phys. Rev. C 92, 024916 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    G. Wolschin, Eur. Phys. J. A 5, 85 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    G. Wolschin, Prog. Part. Nucl. Phys. 59, 374 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    G. Wolschin, EPL 95, 61001 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    G. Wolschin, J. Phys. G 40, 045104 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    G. Wolschin, Phys. Rev. C 91, 014905 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    I. Bautista, C. Pajares, J.G. Milhano, J. Dias de Deus, Phys. Rev. C 86, 034909 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    B.-C. Li, Y.-Z. Wang, F.-H. Liu, X.-J. Wen, Y.-E. Dong, Phys. Rev. D 89, 054014 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    H. Zheng, L.L. Zhu, Adv. High Energy Phys. 2016, 9632126 (2016)CrossRefGoogle Scholar
  55. 55.
    E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993)ADSCrossRefGoogle Scholar
  56. 56.
    Z.B. Tang, Y.C. Xu, L.J. Ruan, G. van Buren, F.Q. Wang, Z.B. Xu, Phys. Rev. C 79, 051901(R) (2009)ADSCrossRefGoogle Scholar
  57. 57.
    F.-H. Liu, Y.-Q. Gao, B.-C. Li, Eur. Phys. J. A 50, 123 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    R.-F. Si, H.-L. Li, F.-H. Liu, arXiv:1710.09645 [nucl-th] (2017)Google Scholar
  59. 59.
    P. Bozek, Eur. Phys. J. C 71, 1530 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    A.N. Mishra, R. Sahoo, E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 74, 3147 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 94, 011501(R) (2016)ADSCrossRefGoogle Scholar
  62. 62.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Theoretical Physics & State Key Laboratory of Quantum Optics and Quantum Optics DevicesShanxi UniversityTaiyuanChina

Personalised recommendations