Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz

  • J. Kahlenberg
  • D. Ries
  • K. U. Ross
  • C. Siemensen
  • M. Beck
  • C. Geppert
  • W. Heil
  • N. Hild
  • J. Karch
  • S. Karpuk
  • F. Kories
  • M. Kretschmer
  • B. Lauss
  • T. Reich
  • Y. Sobolev
  • N. Trautmann
Regular Article - Experimental Physics

Abstract.

The performance of the upgraded solid deuterium ultracold neutron source at the pulsed reactor TRIGA Mainz is described. The current configuration stage comprises the installation of a He liquefier to run UCN experiments over long-term periods, the use of stainless steel neutron guides with improved transmission as well as sputter-coated non-magnetic 58NiMo alloy at the inside walls of the thermal bridge and the converter cup. The UCN yield was measured in a “standard” UCN storage bottle (stainless steel) with a volume of 32 litres outside the biological shield at the experimental area yielding UCN densities of 8.5/cm3; an increase by a factor of 3.5 compared to the former setup. The measured UCN storage curve is in good agreement with the predictions from a Monte Carlo simulation developed to model the source. The growth and formation of the solid deuterium converter during freeze-out are affected by the ortho/para ratio of the H2 premoderator.

References

  1. 1.
    V.K. Ignatovich, The Physics of Ultracold Neutrons (Oxford Science Publications, Clarendon Press, Oxford, 1990)Google Scholar
  2. 2.
    R. Golub, D.J. Richardson, S.K. Lamoreaux, Ultra-Cold Neutrons (Adam Hilger, Bristol, 1991)Google Scholar
  3. 3.
    A. Serebrov, V. Varlamov, A. Kharitonov et al., Phys. Lett. B 605, 72 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    A. Pichlmaier, V. Varlamov, K. Schreckenbach, P. Geltenbort, Phys. Lett. B 693, 221 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    S.S. Arzumanov, L.N. Bondarenko, V.I. Morozov, Y.N. Panin, S.M. Chernyavsky, JETP Lett. 95, 224 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    V.F. Ezhov, A.Z. Andreev, G. Ban, arXiv:1412.7434 (2014)Google Scholar
  7. 7.
    C.L. Morris, E.R. Adamek, L.J. Broussard et al., Rev. Sci. Instrum. 88, 053508 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    R.W. Pattie Jr., N.B. Callahan, C. Cude-Woods, arXiv:1707.01817 (2017)Google Scholar
  9. 9.
    C.A. Baker, D.D. Doyle, P. Geltenbort et al., Phys. Rev. Lett. 97, 131801 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    C. Baker, G. Ban, K. Bodek et al., Phys. Proc. 17, 159 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A.P. Serebrov, E.A. Kolomenskiy, A.N. Pirozhkov et al., Phys. Rev. C 92, 055501 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Pendlebury, S. Afach, N.J. Ayres et al., Phys. Rev. D 92, 092003 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    J. Liu, M.P. Mendenhall, A.T. Holley et al., Phys. Rev. Lett. 105, 181803 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    B. Plaster, R. Rios, H.O. Back et al., Phys. Rev. C 86, 055501 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M.P. Mendenhall, R.W. Pattie, Y. Bagdasarova et al., Phys. Rev. C 87, 032501 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Borisov, N. Borovikova, A. Vasilev et al., Zh. Tekh. Fiz. 58, 951 (1988)Google Scholar
  17. 17.
    K. Durstberger-Rennhofer, T. Jenke, H. Abele, Phys. Rev. D 84, 5 (2011)CrossRefGoogle Scholar
  18. 18.
    C. Plonka-Spehr, A. Kraft, P. Iaydjiev et al., Nucl. Instrum. Methods A 778, 26 (2010)Google Scholar
  19. 19.
    C. Siemensen, D. Brose, L. Böhmer, P. Geltenbort, C. Plonka-Spehr, Nucl. Instrum. Methods A 778, 26 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    V.V. Nesvizhevsky, H.G. Börner, A.K. Petukhov et al., Nature 415, 6869 (2002)CrossRefGoogle Scholar
  21. 21.
    H. Abele, T. Jenke, H. Leeb et al., Phys. Rev. D 81, 065019 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    T. Jenke, P. Geltenbort, H. Lemmel et al., Nat. Phys. 7, 468 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Jenke, G. Cronenberg, J. Burgdörfer et al., Phys. Rev. Lett. 112, 151105 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    A. Frank, P. Geltenbort, M. Jentschel et al., Nucl. Instrum. Methods A 611, 314 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    G. Kulin, A. Frank, S. Goryunov et al., Phys. Rev. A 93, 033606 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    G. Kulin, A. Frank, S. Goryunov et al., Nucl. Instrum. Methods A 819, 67 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    V.A. Bushuev, A.I. Frank, G.V. Kulin, J. Exp. Theor. Phys. 122, 32 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    A. Steyerl, H. Nagel, F.-X. Schreiber et al., Phys. Lett. A 116, 347 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    R. Golub, K. Böning, Z. Phys. B 51, 95 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    Yu.N. Pokotilovski, Nucl. Instrum. Methods A 356, 412 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    A.P. Serebrov, V.A. Mityukhlyaev, A.A. Zakharov et al., JETP Lett. 66, 802 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    C.L. Morris, J.M. Anaya, T.J. Bowles et al., Phys. Rev. Lett. 89, 272501 (2002)CrossRefGoogle Scholar
  33. 33.
    A. Saunders, J.M. Anaya, T.J. Bowles et al., Phys. Lett. B 593, 55 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    A. Anghel, F. Atchison, B. Blau et al., Nucl. Instrum. Methods A 611, 272 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    B. Lauss, AIP Conf. Proc. 1441, 576 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    B. Lauss, Hyperfine Interact. 211, 21 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    B. Lauss, Phys. Proc. 51, 98 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    A. Saunders, M. Makela, Y. Bagdasarova et al., Rev. Sci. Instrum. 84, 013304 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    F.M. Piegsa, M. Fertl, S.N. Ivanov et al., Phys. Rev. C 90, 015501 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    K.K.H. Leung, S. Ivanov, F.M. Piegsa et al., Phys. Rev. C 93, 025501 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Masuda, K. Hatanaka, S.-C. Jeong et al., Phys. Rev. Lett. 108, 134801 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    E. Korobkina, G. Mediin, B. Wehring et al., Nucl. Instrum. Methods A 767, 169 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    U. Trinks, F.J. Hartmann, S. Paul et al., Nucl. Instrum. Methods A 440, 666 (2000)ADSCrossRefGoogle Scholar
  44. 44.
  45. 45.
    A. Frei, Yu. Sobolev, I. Altarev et al., Eur. Phys. J. A 34, 119 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    J. Karch, Yu. Sobolev, M. Beck et al., Eur. Phys. J. A 50, 78 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    OXISORB is obtained from the MESSER company (Messer-Griesheim, Germany) http://www.messergroup.com/
  48. 48.
    I. Altarev, M. Daum, A. Frei et al., Eur. Phys. J. A 37, 9 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    Z.-Ch. Yu, S.S. Malik, R. Golub, Z. Phys. B 62, 137 (1986)ADSCrossRefGoogle Scholar
  50. 50.
    C.-Y. Liu, A.R. Young, S.K. Lamoreaux, Phys. Rev. B 62, R3582 (2000)ADSGoogle Scholar
  51. 51.
    G. Bison, M. Daum, K. Kirch et al., Phys. Rev. C 95, 045503 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    G. Bison, F. Burri, M. Daum et al., Nucl. Instrum. Methods A 830, 449 (2016)ADSCrossRefGoogle Scholar
  53. 53.
  54. 54.
    M. Klein, H. Abele, D. Fiolka, Art and Symmetry in Experimental Physics, edited by D. Budker, AIP Conf. Proc., Vol. 596 (AIP, 2001)Google Scholar
  55. 55.
    J. Evertsson, F. Bertrama, F. Zhang et al., Appl. Surf. Sci. 349, 826 (2015)CrossRefGoogle Scholar
  56. 56.
    F. Schmidt, Phys. Rev. B 10, 4480 (1974)ADSCrossRefGoogle Scholar
  57. 57.
    T.E. Fessler, J.W. Blue, Phys. Rev. Lett. 14, 811 (1965)ADSCrossRefGoogle Scholar
  58. 58.
    J.A. Young, J.U. Koppel, Phys. Rev. 135, A603 (1964)ADSCrossRefGoogle Scholar
  59. 59.
    K.B. Grammer, R. Alarcon, L. Barron-Palos et al., Phys. Rev. B 91, 180301(R) (2015)ADSCrossRefGoogle Scholar
  60. 60.
    H. Würz, Untersuchungen zur Neutronenthermalisierung an flüssigem Ortho- und Para-Wasserstoff, KFK-1697 (1973)Google Scholar
  61. 61.
    A. Frei, E. Gutsmiedl, C. Morkel et al., EPL 92, 62001 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    H.M. Roder, G.E. Childs, R.D. McCarty, P.E. Angerhofer, Survey of the Properties of the Hydrogen Isotypes Below Their Critical Temperature, NBS Technical Note 641, (1973)Google Scholar
  63. 63.
    E. Korobkina, Design and results of cryogenic commissioning tests of the PULSTAR UCN source, International Workshop: Probing Fundamental Symmetries and Interactions with UCN, Mainz 2016, https://indico.mitp.uni-mainz.de/event/59/timetable/#20160411
  64. 64.
    B.Ya. Gorodilov, O.A. Korolyuk, A.I. Krivchikov et al., J. Low Temp. Phys. 119, 497 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    M. Nielsen, H. Bjerrum Moller, Phys. Rev. B 3, 4383 (1971)ADSCrossRefGoogle Scholar
  66. 66.
    Z. Chowdhuri, G. Zsigmond, in Proceedings ICANS XIX, 2010 Grindelwald, Switzerland (2010)Google Scholar
  67. 67.
    L. Göltl-Simmenauer, Diploma Thesis, Heidelberg 2008 (Table 6.1: Transmission values for measured foils) https://www.psi.ch/ltp/UCNPapersThesesEN/Diplom_Goeltl_s.pdf

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • J. Kahlenberg
    • 1
  • D. Ries
    • 2
    • 3
    • 4
  • K. U. Ross
    • 1
  • C. Siemensen
    • 2
  • M. Beck
    • 1
  • C. Geppert
    • 2
  • W. Heil
    • 1
  • N. Hild
    • 3
    • 4
  • J. Karch
    • 1
  • S. Karpuk
    • 2
  • F. Kories
    • 1
  • M. Kretschmer
    • 1
  • B. Lauss
    • 3
  • T. Reich
    • 2
  • Y. Sobolev
    • 2
  • N. Trautmann
    • 2
  1. 1.Institute of PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Institute of Nuclear ChemistryJohannes Gutenberg UniversityMainzGermany
  3. 3.Laboratory for Particle PhysicsPaul Scherrer Institute (PSI)VilligenSwitzerland
  4. 4.Institute for Particle PhysicsETH ZürichZürichSwitzerland

Personalised recommendations