Physical plausibility of cold star models satisfying Karmarkar conditions

Regular Article - Theoretical Physics
  • 17 Downloads

Abstract.

In the present article, we have obtained a new well behaved solution to Einstein’s field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e.\( 2M/R \le 8/9\) . The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera’s cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models.

References

  1. 1.
    A.B. Migdal, Nucl. Phys. 13, 655 (1959)CrossRefGoogle Scholar
  2. 2.
    N. Itoh, Prog. Theor. Phys. 44, 291 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    E. Witten, Phys. Rev. D 30, 272 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    K. Schwarzschild, Sitz. Deut. Akad. Wiss. Math. Phys. Berlin 24, 424 (1916)Google Scholar
  6. 6.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSCrossRefGoogle Scholar
  8. 8.
    L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Weber, Pulsars as Astrophysical Observatories for Nuclear and Particle Physics (Institute of Physics Publishing, Bristol, 1999)Google Scholar
  10. 10.
    R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)ADSCrossRefGoogle Scholar
  11. 11.
    A.I. Sokolov, J. Exp. Theor. Phys. 79, 1137 (1980)Google Scholar
  12. 12.
    R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    S.D. Maharaj, M. Govender, Aust. J. Phys. 50, 959 (1997)ADSGoogle Scholar
  14. 14.
    K. Komathiraj, S.D. Maharaj, Gen. Relativ. Gravit. 39, 2079 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    K.R. Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)Google Scholar
  16. 16.
    P. Bhar, Astrophys. Space Sci. 359, 41 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    P. Bhar, M.H. Murad, Astrophys. Space Sci. 361, 334 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Rahman et al., Eur. Phys. J. C 74, 3126 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Bhar et al., Astrophys. Space Sci. 361, 343 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    M. Malaver, Front. Math. Its Appl. 1, 9 (2014)Google Scholar
  21. 21.
    L. Herrera, W. Barreto, Phys. Rev. D 88, 084022 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Bhar et al., Astrophys. Space Sci. 359, 13 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Ksh. Newton Singh, Neeraj Pant, N. Pradhan, Astrophys. Space Sci. 361, 173 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Ksh. Newton Singh, Neeraj Pant, Astrophys. Space Sci. 361, 177 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Ksh. Newton Singh, Piyali Bhar, Neeraj Pant, Int. J. Mod. Phys. D 25, 1650099 (2016)CrossRefGoogle Scholar
  26. 26.
    Ksh. Newton Singh, Piyali Bhar, Neeraj Pant, Astrophys. Space Sci. 361, 339 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Piyali Bhar, S.K. Maurya, Y.K. Gupta, Tuhina Manna, Eur. Phys. J. A 52, 312 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Piyali Bhar, Ksh. Newton Singh, Tuhina Manna, Int. J. Mod. Phys. D 26, 1750090 (2017)CrossRefGoogle Scholar
  29. 29.
    Piyali Bhar, Megan Govender, Int. J. Mod. Phys. D 26, 1750053 (2017)CrossRefGoogle Scholar
  30. 30.
    Piyali Bhar, Ksh. Newton Singh, Farook Rahaman, Neeraj Pant, Sumita Banerjee, Int. J. Mod. Phys. D 26, 1750078 (2017)CrossRefGoogle Scholar
  31. 31.
    K. Newton Singh et al., Mod. Phys. Lett. A 32, 1750093 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Newton Singh et al., Ann. Phys. 377, 256 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    S.K. Maurya, S.D. Maharaj, Eur. Phys. J. C 77, 328 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    S.K. Maurya, Eur. Phys. J. A 53, 89 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Maurya et al., Eur. Phy. J. C 76, 266 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    H. Abreu et al., Class. Quantum Grav. 24, 4631 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    J. Ponce de Leon, Gen. Relativ. Gravit. 19, 797 (1987)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    W. Hillebrandt, K.O. Steinmetz, Astron. Astrophys. 53, 283 (1976)ADSGoogle Scholar
  41. 41.
    H. Bondi, Proc. R. Soc. Lond. A 281, 39 (1964)ADSCrossRefGoogle Scholar
  42. 42.
    R. Chan et al., Mon. Not. R. Astron. Soc. 265, 533 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    L. Herrera et al., Astrophys. J. 234, 1094 (1979)ADSCrossRefGoogle Scholar
  44. 44.
    L. Herrera, Phys. Lett. A 165, 206 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    T. Gangopadhyay et al., Mon. Not. R. Astron. Soc. 431, 3216 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Physics Dept.Kumaun UniversityAlmoraIndia
  2. 2.Maths Dept.N. D. A.Khadakwasla, PuneIndia

Personalised recommendations