Skip to main content
Log in

Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We consider an analysis of potentials related to Schrödinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005) arXiv:nucl-th/0405013

    Article  ADS  Google Scholar 

  2. E.V. Shuryak, Nucl. Phys. A 750, 64 (2005) arXiv:hep-ph/0405066

    Article  ADS  Google Scholar 

  3. FlowQCD Collaboration (M. Asakawa et al.), Phys. Rev. D 90, 011501 (2014) 92

    Article  ADS  Google Scholar 

  4. M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004) arXiv:hep-lat/0308034

    Article  ADS  Google Scholar 

  5. Y. Nakahara, M. Asakawa, T. Hatsuda, Phys. Rev. D 60, 091503 (1999) arXiv:hep-lat/9905034

    Article  ADS  Google Scholar 

  6. A. Ayala, C.A. Dominguez, M. Loewe, Adv. High Energy Phys. 2017, 9291623 (2017) arXiv:1608.04284 [hep-ph]

    Article  Google Scholar 

  7. A. Mocsy, Eur. Phys. J. C 61, 705 (2009) arXiv:0811.0337 [hep-ph]

    Article  ADS  Google Scholar 

  8. S. Shi, X. Guo, P. Zhuang, Phys. Rev. D 88, 014021 (2013) arXiv:1306.1896 [nucl-th]

    Article  ADS  Google Scholar 

  9. J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) (Adv. Theor. Math. Phys. 2

    Article  Google Scholar 

  10. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) arXiv:hep-th/9802150

    Article  MathSciNet  ADS  Google Scholar 

  11. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998) arXiv:hep-th/9803131

    Article  MathSciNet  Google Scholar 

  12. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998) arXiv:hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Erdmenger, N. Evans, I. Kirsch, E. Threlfall, Eur. Phys. J. A 35, 81 (2008) arXiv:0711.4467 [hep-th]

    Article  ADS  Google Scholar 

  14. H. Nastase, Introduction to the ADS/CFT Correspondence, (Cambridge University Press, 2015)

  15. K. Kajantie, T. Tahkokallio, J.T. Yee, JHEP 01, 019 (2007) arXiv:hep-ph/0609254

    Article  ADS  Google Scholar 

  16. P. Colangelo, F. Giannuzzi, S. Nicotri, F. Zuo, Phys. Rev. D 88, 115011 (2013) arXiv:1308.0489 [hep-ph]

    Article  ADS  Google Scholar 

  17. P. Colangelo, F. Giannuzzi, S. Nicotri, JHEP 05, 076 (2012) arXiv:1201.1564 [hep-ph]

    Article  ADS  Google Scholar 

  18. N.R.F. Braga, M.A. Martin Contreras, S. Diles, Eur. Phys. J. C 76, 598 (2016) arXiv:1604.08296 [hep-ph]

    Article  ADS  Google Scholar 

  19. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  20. F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37, 617 (1988)

    Article  ADS  Google Scholar 

  21. M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 81, 065024 (2010) arXiv:0911.2298 [hep-ph]

    Article  ADS  Google Scholar 

  22. A.S. Miranda, C.A. Ballon Bayona, H. Boschi-Filho, N.R.F. Braga, Nucl. Phys. Proc. Suppl. 199, 107 (2010) arXiv:0910.4319 [hep-th]

    Article  ADS  Google Scholar 

  23. L. Bellantuono, P. Colangelo, F. Giannuzzi, Eur. Phys. J. C 74, 2830 (2014) arXiv:1402.5308 [hep-ph]

    Article  ADS  Google Scholar 

  24. S.P. Bartz, T. Jacobson, Phys. Rev. D 94, 075022 (2016) arXiv:1607.05751 [hep-ph]

    Article  ADS  Google Scholar 

  25. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000) arXiv:hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Vega, I. Schmidt, Phys. Rev. D 78, 017703 (2008) arXiv:0806.2267 [hep-ph]

    Article  ADS  Google Scholar 

  27. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 85, 076003 (2012) arXiv:1108.0346 [hep-ph]

    Article  ADS  Google Scholar 

  28. A. Vega, P. Cabrera, Phys. Rev. D 93, 114026 (2016) arXiv:1601.05999 [hep-ph]

    Article  ADS  Google Scholar 

  29. P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri, Phys. Rev. D 78, 055009 (2008) arXiv:0807.1054 [hep-ph]

    Article  ADS  Google Scholar 

  30. L.X. Cui, Z. Fang, Y.L. Wu, Chin. Phys. C 40, 063101 (2016) arXiv:1404.0761 [hep-ph]

    Article  ADS  Google Scholar 

  31. P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 80, 094019 (2009) arXiv:0909.1534 [hep-ph]

    Article  ADS  Google Scholar 

  32. N. Ishii, H. Suganuma, H. Matsufuru, Phys. Rev. D 66, 094506 (2002) arXiv:hep-lat/0206020

    Article  ADS  Google Scholar 

  33. X.F. Meng, G. Li, Y. Chen, C. Liu, Y.B. Liu, J.P. Ma, J.B. Zhang, Phys. Rev. D 80, 114502 (2009) arXiv:0903.1991 [hep-lat]

    Article  ADS  Google Scholar 

  34. M. Fujita, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 80, 035001 (2009) arXiv:0903.2316 [hep-ph]

    Article  ADS  Google Scholar 

  35. A. Vega, I. Schmidt, Phys. Rev. D 79, 055003 (2009) arXiv:0811.4638 [hep-ph]

    Article  ADS  Google Scholar 

  36. H. Forkel, Phys. Lett. B 694, 252 (2011) arXiv:1007.4341 [hep-ph]

    Article  ADS  Google Scholar 

  37. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, Phys. Rev. D 96, 034030 (2017) arXiv:1706.07716 [hep-ph]

    Article  ADS  Google Scholar 

  38. G. Arfken, H. Weber, H. Weber, Mathematical Methods for Physicist, 5th Edition (Academic Press, 2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Vega.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, A., Ibañez, A. Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons. Eur. Phys. J. A 53, 217 (2017). https://doi.org/10.1140/epja/i2017-12414-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12414-3

Navigation