Skip to main content
Log in

The reactions \(\pi\pi \rightarrow \pi\pi\) and \(\gamma\gamma \rightarrow \pi\pi\) in \(\chi\) PT with an isosinglet scalar resonance

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The lowest-lying resonance in the QCD spectrum is the \( 0^{++}\) isoscalar \( \sigma\)-meson, also known as the \( f_{0}(500)\). We augment SU(2) chiral perturbation theory (\( \chi\) PT) by including the \( \sigma\)-meson as an additional explicit degree of freedom, as proposed by Soto, Talavera, and Tarrús and others. In this effective field theory, denoted \( \chi\) PTS, the \( \sigma\)-meson’s well-established mass and decay width are not sufficient to properly renormalize its self energy. At \( O(p^{4})\) another low-energy constant appears in the dressed \( \sigma\)-meson propagator; we adjust it so that the isoscalar pion-pion scattering length is also reproduced. We compare the resulting amplitudes for the \( \pi\pi\rightarrow\pi\pi\) and \( \gamma\gamma\rightarrow\pi\pi\) reactions to data from threshold through the energies at which the \( \sigma\)-meson resonance affects observables. The leading-order (LO) \( \pi \pi\) amplitude reproduces the \( \sigma\)-meson pole position, the isoscalar \( \pi \pi\) scattering lengths and \( \pi \pi\) scattering and \( \gamma\gamma\rightarrow\pi\pi\) data up to \( \sqrt{s} \approx 0.5\) GeV. It also yields a \( \gamma\gamma\rightarrow\pi\pi\) amplitude that obeys the Ward identity. The value obtained for the \( \pi^{0}\) polarizability is, however, only slightly larger than that obtained in standard \( \chi\) PT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Peláez, Phys. Rep. 658, 1 (2016) arXiv:1510.00653 [hep-ph]

    Article  ADS  Google Scholar 

  2. M.H. Johnson, E. Teller, Phys. Rev. 98, 783 (1955)

    Article  ADS  Google Scholar 

  3. J.S. Schwinger, Ann. Phys. 2, 407 (1957)

    Article  ADS  Google Scholar 

  4. Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  5. I. Caprini, G. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006) arXiv:hep-ph/0512364

    Article  ADS  Google Scholar 

  6. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001) arXiv:hep-ph/0103088

    Article  ADS  Google Scholar 

  7. R. Garcia-Martin, R. Kaminski, J.R. Peláez, J. Ruiz de Elvira, Phys. Rev. Lett. 107, 072001 (2011) arXiv:1107.1635 [hep-ph]

    Article  ADS  Google Scholar 

  8. B. Moussallam, Eur. Phys. J. C 71, 1814 (2011) arXiv:1110.6074 [hep-ph]

    Article  ADS  Google Scholar 

  9. R.A. Briceno, J.J. Dudek, R.G. Edwards, D.J. Wilson, Phys. Rev. Lett. 118, 022002 (2017) arXiv:1607.05900 [hep-ph]

    Article  ADS  Google Scholar 

  10. R.J. Crewther, L.C. Tunstall, PoS CD15, 132 (2015) arXiv:1510.01322 [hep-ph]

    Google Scholar 

  11. LatKMI Collaboration (Y. Aoki et al.), Phys. Rev. D 89, 111502 (2014) arXiv:1403.5000 [hep-lat]

    Article  Google Scholar 

  12. T. Appelquist et al., Phys. Rev. D 93, 114514 (2016) arXiv:1601.04027 [hep-lat]

    Article  ADS  Google Scholar 

  13. M. Golterman, Y. Shamir, Phys. Rev. D 94, 054502 (2016) arXiv:1603.04575 [hep-ph]

    Article  ADS  Google Scholar 

  14. T. Appelquist, J. Ingoldby, M. Piai, JHEP 07, 035 (2017) arXiv:1702.04410 [hep-ph]

    Article  ADS  Google Scholar 

  15. D.J. Cecile, S. Chandrasekharan, Phys. Rev. D 77, 091501 (2008) arXiv:0801.3823 [hep-lat]

    Article  ADS  Google Scholar 

  16. J. Soto, P. Talavera, J. Tarrus, Nucl. Phys. B 866, 270 (2013) arXiv:1110.6156 [hep-ph]

    Article  ADS  Google Scholar 

  17. L. Ametller, P. Talavera, Phys. Rev. D 89, 096004 (2014) arXiv:1402.2649 [hep-ph]

    Article  ADS  Google Scholar 

  18. L. Ametller, P. Talavera, Phys. Rev. D 92, 074008 (2015) arXiv:1504.06505 [hep-ph]

    Article  ADS  Google Scholar 

  19. M. Hansen, K. Langble, F. Sannino, Phys. Rev. D 95, 036005 (2017) arXiv:1610.02904 [hep-ph]

    Article  ADS  Google Scholar 

  20. M. Gell-Mann, M. Levy, Nuovo Cimento 16, 705 (1960)

    Article  Google Scholar 

  21. N.N. Achasov, G.N. Shestakov, Phys. Rev. D 49, 5779 (1994)

    Article  ADS  Google Scholar 

  22. N.N. Achasov, G.N. Shestakov, Phys. Rev. Lett. 99, 072001 (2007) arXiv:0704.2368 [hep-ph]

    Article  ADS  Google Scholar 

  23. P.C. Bruns, arXiv:1610.00119 [nucl-th]

  24. V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003) arXiv:nucl-th/0212024

    Article  ADS  Google Scholar 

  25. V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007) arXiv:hep-ph/0609004

    Article  ADS  Google Scholar 

  26. J.A. McGovern, D.R. Phillips, H.W. Griesshammer, Eur. Phys. J. A 49, 12 (2013) arXiv:1210.4104 [nucl-th]

    Article  ADS  Google Scholar 

  27. M. Hoferichter, D.R. Phillips, C. Schat, Eur. Phys. J. C 71, 1743 (2011) arXiv:1106.4147 [hep-ph]

    Article  ADS  Google Scholar 

  28. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)

    Article  ADS  Google Scholar 

  29. J. Gasser, H. Leutwyler, Phys. Rep. 87, 77 (1982)

    Article  ADS  Google Scholar 

  30. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  Google Scholar 

  31. S. Scherer, M.R. Schindler, A Primer for Chiral Perturbation Theory, Lect. Notes Phys. 830 (Springer, 2012)

  32. NA48-2 Collaboration (J.R. Batley et al.), Eur. Phys. J. C 70, 635 (2010)

    Article  Google Scholar 

  33. J.R. Taylor, Scattering Theory (John Wiley & Sons, Inc, 1972)

  34. R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, F.J. Yndurain, Phys. Rev. D 83, 074004 (2011) arXiv:1102.2183 [hep-ph]

    Article  ADS  Google Scholar 

  35. S.D. Protopopescu, Proceedings of the International Conference on Experimental Meson Spectroscopy, Philadelphia, Pa., Apr 28-29, 1972 (Amer. Inst. Phys., N.Y., 1972) pp. 17--58

  36. J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model, (Cambridge University Press, Cambridge, 1992) p. 180

  37. J.F. Donoghue, B.R. Holstein, Y.C. Lin, Phys. Rev. D 37, 2423 (1988)

    Article  ADS  Google Scholar 

  38. Crystal Ball Collaboration (H. Marsiske et al.), Phys. Rev. D 41, 3324 (1990)

    Article  Google Scholar 

  39. Belle Collaboration (S. Uehara et al.), Phys. Rev. D 78, 052004 (2008) arXiv:0805.3387 [hep-ex]

    Article  Google Scholar 

  40. J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 728, 31 (2005) arXiv:hep-ph/0506265

    Article  ADS  Google Scholar 

  41. A. Gomez Nicola, J.R. Peláez, G. Rios, Phys. Rev. D 77, 056006 (2008) arXiv:0712.2763 [hep-ph]

    Article  ADS  Google Scholar 

  42. C. Hanhart, J.R. Peláez, G. Rios, Phys. Rev. Lett. 100, 152001 (2008) arXiv:0801.2871 [hep-ph]

    Article  ADS  Google Scholar 

  43. M. Döring, B. Hu, M. Mai, arXiv:1610.10070 [hep-lat]

  44. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001) arXiv:hep-ph/0005297

    Article  ADS  Google Scholar 

  45. N.N. Achasov, A.V. Kiselev, Phys. Rev. D 83, 054008 (2011) arXiv:1011.4446 [hep-ph]

    Article  ADS  Google Scholar 

  46. N.N. Achasov, A.V. Kiselev, Phys. Rev. D 85, 094016 (2012) arXiv:1201.6602 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Phillips.

Additional information

Communicated by A. Peshier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapaliya, A., Phillips, D.R. The reactions \(\pi\pi \rightarrow \pi\pi\) and \(\gamma\gamma \rightarrow \pi\pi\) in \(\chi\) PT with an isosinglet scalar resonance. Eur. Phys. J. A 53, 206 (2017). https://doi.org/10.1140/epja/i2017-12401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12401-8

Navigation