Constructing a neutron star from the lattice in G2-QCD

Regular Article - Theoretical Physics
  • 32 Downloads

Abstract.

The inner structure of neutron stars is still an open question. One obstacle is the infamous sign problem of lattice QCD, which bars access to the high-density equation of state. A possibility to make progress and understand the qualitative impact of gauge interactions on the neutron star structure is to study a modified version of QCD without the sign problem. In the modification studied here the gauge group of QCD is replaced by the exceptional Lie group \( G_2\) , which keeps neutrons in the spectrum. Using an equation of state from lattice calculations only we determine the mass-radius-relation for a neutron star using the Tolman-Oppenheimer-Volkoff equation. This allows us to understand the challenges and approximations currently necessary to use lattice data for this purpose. We discuss in detail the particular uncertainties and systematic problems of this approach.

References

  1. 1.
    N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer-Verlag, New York, 1997)Google Scholar
  2. 2.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010) arXiv:1005.0811ADSCrossRefGoogle Scholar
  3. 3.
    J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, 2006)Google Scholar
  4. 4.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007) arXiv:astro-ph/0612440ADSCrossRefGoogle Scholar
  5. 5.
    Virgo, LIGO Scientific Collaborations (B.P. Abbott et al.), Phys. Rev. Lett. 116, 061102 (2016) arXiv:1602.03837ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    W. Del Pozzo, T.G.F. Li, M. Agathos, C. Van Den Broeck, S. Vitale, Phys. Rev. Lett. 111, 071101 (2013) arXiv:1307.8338ADSCrossRefGoogle Scholar
  7. 7.
    B. Friman et al., Lect. Notes Phys. 814, 1 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C. Gattringer, C.B. Lang, Quantum Chromodynamics on the Lattice, Lect. Notes Phys. 788 (Springer, 2010). Google Scholar
  9. 9.
    P. de Forcrand, PoS LAT2009, 010 (2009) arXiv:1005.0539Google Scholar
  10. 10.
    G. Aarts, E. Seiler, D. Sexty, I.-O. Stamatescu, arXiv:1701.02322 (2017)Google Scholar
  11. 11.
    S. Leupold et al., Lect. Notes Phys. 814, 39 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M. Buballa, Phys. Rep. 407, 205 (2005) arXiv:hep-ph/0402234ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Pawlowski, AIP Conf. Proc. 1343, 75 (2010) arXiv:1012.5075ADSGoogle Scholar
  14. 14.
    J. Braun, J. Phys. G 39, 033001 (2012) arXiv:1108.4449ADSCrossRefGoogle Scholar
  15. 15.
    K. Holland, P. Minkowski, M. Pepe, U.J. Wiese, Nucl. Phys. B 668, 207 (2003) arXiv:hep-lat/0302023ADSCrossRefGoogle Scholar
  16. 16.
    A. Maas, L. von Smekal, B. Wellegehausen, A. Wipf, Phys. Rev. D 86, 111901 (2012) arXiv:1203.5653ADSCrossRefGoogle Scholar
  17. 17.
    A. Maas, B.H. Wellegehausen, PoS LATTICE2012, 080 (2012) arXiv:1210.7950Google Scholar
  18. 18.
    B.H. Wellegehausen, A. Maas, A. Wipf, L. von Smekal, Phys. Rev. D 89, 056007 (2014) arXiv:1312.5579ADSCrossRefGoogle Scholar
  19. 19.
    B.H. Wellegehausen, L. von Smekal, PoS LATTICE2014, 177 (2015) arXiv:1501.06706Google Scholar
  20. 20.
    M. Pepe, U.J. Wiese, Nucl. Phys. B 768, 21 (2007) arXiv:hep-lat/0610076ADSCrossRefGoogle Scholar
  21. 21.
    J. Greensite, K. Langfeld, Š, Phys. Rev. D 75, 034501 (2007) arXiv:hep-lat/0609050ADSCrossRefGoogle Scholar
  22. 22.
    A. Maas, Š, JHEP 02, 070 (2008) arXiv:0711.1451ADSCrossRefGoogle Scholar
  23. 23.
    G. Cossu, M. D’Elia, A. Di Giacomo, B. Lucini, C. Pica, JHEP 10, 100 (2007) arXiv:0709.0669ADSCrossRefGoogle Scholar
  24. 24.
    J. Danzer, C. Gattringer, A. Maas, JHEP 01, 024 (2009) arXiv:0810.3973ADSCrossRefGoogle Scholar
  25. 25.
    L. Liptak, Š, Phys. Rev. D 78, 074501 (2008) arXiv:0807.1390ADSCrossRefGoogle Scholar
  26. 26.
    A. Maas, JHEP 02, 076 (2011) arXiv:1012.4284ADSCrossRefGoogle Scholar
  27. 27.
    B.H. Wellegehausen, A. Wipf, C. Wozar, Phys. Rev. D 80, 065028 (2009) arXiv:0907.1450ADSCrossRefGoogle Scholar
  28. 28.
    B.H. Wellegehausen, A. Wipf, C. Wozar, Phys. Rev. D 83, 016001 (2011) arXiv:1006.2305ADSCrossRefGoogle Scholar
  29. 29.
    E.-M. Ilgenfritz, A. Maas, Phys. Rev. D 86, 114508 (2012) arXiv:1210.5963ADSCrossRefGoogle Scholar
  30. 30.
    M. Bruno, M. Caselle, M. Panero, R. Pellegrini, JHEP 03, 057 (2015) arXiv:1409.8305ADSCrossRefGoogle Scholar
  31. 31.
    C. Bonati, JHEP 03, 006 (2015) arXiv:1501.01172ADSCrossRefGoogle Scholar
  32. 32.
    B.H. Wellegehausen, PoS LATTICE2011, 266 (2011) arXiv:1111.0496Google Scholar
  33. 33.
    O. Hajizadeh, A. Maas, PoS LATTICE2016, 358 (2016) arXiv:1609.06979Google Scholar
  34. 34.
    J. Kogut, M.A. Stephanov, D. Toublan, J. Verbaarschot, A. Zhitnitsky, Nucl. Phys. B 582, 477 (2000) arXiv:hep-ph/0001171ADSCrossRefGoogle Scholar
  35. 35.
    L. von Smekal, Nucl. Phys. Proc. Suppl. 228, 179 (2012) arXiv:1205.4205ADSCrossRefGoogle Scholar
  36. 36.
    M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda, H. Suzuki, Phys. Rev. D 94, 114512 (2016) arXiv:1610.07810ADSCrossRefGoogle Scholar
  37. 37.
    S. Gandolfi, J. Carlson, S. Reddy, A.W. Steiner, R.B. Wiringa, Eur. Phys. J. A 50, 10 (2014) arXiv:1307.5815ADSCrossRefGoogle Scholar
  38. 38.
    T.D. Cohen, Phys. Rev. Lett. 91, 222001 (2003) arXiv:hep-ph/0307089ADSCrossRefGoogle Scholar
  39. 39.
    B.H. Wellegehausen, L. von Smekal, PoS LATTICE2016, 078 (2016) arXiv:1702.00238Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of Graz, Institute of Physics, NAWI GrazGrazAustria

Personalised recommendations