Skip to main content
Log in

Constructing a neutron star from the lattice in G2-QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The inner structure of neutron stars is still an open question. One obstacle is the infamous sign problem of lattice QCD, which bars access to the high-density equation of state. A possibility to make progress and understand the qualitative impact of gauge interactions on the neutron star structure is to study a modified version of QCD without the sign problem. In the modification studied here the gauge group of QCD is replaced by the exceptional Lie group \( G_2\) , which keeps neutrons in the spectrum. Using an equation of state from lattice calculations only we determine the mass-radius-relation for a neutron star using the Tolman-Oppenheimer-Volkoff equation. This allows us to understand the challenges and approximations currently necessary to use lattice data for this purpose. We discuss in detail the particular uncertainties and systematic problems of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer-Verlag, New York, 1997)

  2. A.W. Steiner, J.M. Lattimer, E.F. Brown, Astrophys. J. 722, 33 (2010) arXiv:1005.0811

    Article  ADS  Google Scholar 

  3. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, 2006)

  4. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007) arXiv:astro-ph/0612440

    Article  ADS  Google Scholar 

  5. Virgo, LIGO Scientific Collaborations (B.P. Abbott et al.), Phys. Rev. Lett. 116, 061102 (2016) arXiv:1602.03837

    Article  ADS  MathSciNet  Google Scholar 

  6. W. Del Pozzo, T.G.F. Li, M. Agathos, C. Van Den Broeck, S. Vitale, Phys. Rev. Lett. 111, 071101 (2013) arXiv:1307.8338

    Article  ADS  Google Scholar 

  7. B. Friman et al., Lect. Notes Phys. 814, 1 (2011)

    Article  ADS  Google Scholar 

  8. C. Gattringer, C.B. Lang, Quantum Chromodynamics on the Lattice, Lect. Notes Phys. 788 (Springer, 2010).

  9. P. de Forcrand, PoS LAT2009, 010 (2009) arXiv:1005.0539

    Google Scholar 

  10. G. Aarts, E. Seiler, D. Sexty, I.-O. Stamatescu, arXiv:1701.02322 (2017)

  11. S. Leupold et al., Lect. Notes Phys. 814, 39 (2011)

    Article  ADS  Google Scholar 

  12. M. Buballa, Phys. Rep. 407, 205 (2005) arXiv:hep-ph/0402234

    Article  ADS  Google Scholar 

  13. J.M. Pawlowski, AIP Conf. Proc. 1343, 75 (2010) arXiv:1012.5075

    ADS  Google Scholar 

  14. J. Braun, J. Phys. G 39, 033001 (2012) arXiv:1108.4449

    Article  ADS  Google Scholar 

  15. K. Holland, P. Minkowski, M. Pepe, U.J. Wiese, Nucl. Phys. B 668, 207 (2003) arXiv:hep-lat/0302023

    Article  ADS  Google Scholar 

  16. A. Maas, L. von Smekal, B. Wellegehausen, A. Wipf, Phys. Rev. D 86, 111901 (2012) arXiv:1203.5653

    Article  ADS  Google Scholar 

  17. A. Maas, B.H. Wellegehausen, PoS LATTICE2012, 080 (2012) arXiv:1210.7950

    Google Scholar 

  18. B.H. Wellegehausen, A. Maas, A. Wipf, L. von Smekal, Phys. Rev. D 89, 056007 (2014) arXiv:1312.5579

    Article  ADS  Google Scholar 

  19. B.H. Wellegehausen, L. von Smekal, PoS LATTICE2014, 177 (2015) arXiv:1501.06706

    Google Scholar 

  20. M. Pepe, U.J. Wiese, Nucl. Phys. B 768, 21 (2007) arXiv:hep-lat/0610076

    Article  ADS  Google Scholar 

  21. J. Greensite, K. Langfeld, Š, Phys. Rev. D 75, 034501 (2007) arXiv:hep-lat/0609050

    Article  ADS  Google Scholar 

  22. A. Maas, Š, JHEP 02, 070 (2008) arXiv:0711.1451

    Article  ADS  Google Scholar 

  23. G. Cossu, M. D’Elia, A. Di Giacomo, B. Lucini, C. Pica, JHEP 10, 100 (2007) arXiv:0709.0669

    Article  ADS  Google Scholar 

  24. J. Danzer, C. Gattringer, A. Maas, JHEP 01, 024 (2009) arXiv:0810.3973

    Article  ADS  Google Scholar 

  25. L. Liptak, Š, Phys. Rev. D 78, 074501 (2008) arXiv:0807.1390

    Article  ADS  Google Scholar 

  26. A. Maas, JHEP 02, 076 (2011) arXiv:1012.4284

    Article  ADS  Google Scholar 

  27. B.H. Wellegehausen, A. Wipf, C. Wozar, Phys. Rev. D 80, 065028 (2009) arXiv:0907.1450

    Article  ADS  Google Scholar 

  28. B.H. Wellegehausen, A. Wipf, C. Wozar, Phys. Rev. D 83, 016001 (2011) arXiv:1006.2305

    Article  ADS  Google Scholar 

  29. E.-M. Ilgenfritz, A. Maas, Phys. Rev. D 86, 114508 (2012) arXiv:1210.5963

    Article  ADS  Google Scholar 

  30. M. Bruno, M. Caselle, M. Panero, R. Pellegrini, JHEP 03, 057 (2015) arXiv:1409.8305

    Article  ADS  Google Scholar 

  31. C. Bonati, JHEP 03, 006 (2015) arXiv:1501.01172

    Article  ADS  Google Scholar 

  32. B.H. Wellegehausen, PoS LATTICE2011, 266 (2011) arXiv:1111.0496

    Google Scholar 

  33. O. Hajizadeh, A. Maas, PoS LATTICE2016, 358 (2016) arXiv:1609.06979

    Google Scholar 

  34. J. Kogut, M.A. Stephanov, D. Toublan, J. Verbaarschot, A. Zhitnitsky, Nucl. Phys. B 582, 477 (2000) arXiv:hep-ph/0001171

    Article  ADS  Google Scholar 

  35. L. von Smekal, Nucl. Phys. Proc. Suppl. 228, 179 (2012) arXiv:1205.4205

    Article  ADS  Google Scholar 

  36. M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda, H. Suzuki, Phys. Rev. D 94, 114512 (2016) arXiv:1610.07810

    Article  ADS  Google Scholar 

  37. S. Gandolfi, J. Carlson, S. Reddy, A.W. Steiner, R.B. Wiringa, Eur. Phys. J. A 50, 10 (2014) arXiv:1307.5815

    Article  ADS  Google Scholar 

  38. T.D. Cohen, Phys. Rev. Lett. 91, 222001 (2003) arXiv:hep-ph/0307089

    Article  ADS  Google Scholar 

  39. B.H. Wellegehausen, L. von Smekal, PoS LATTICE2016, 078 (2016) arXiv:1702.00238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouraman Hajizadeh.

Additional information

Communicated by L. Tolos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, O., Maas, A. Constructing a neutron star from the lattice in G2-QCD. Eur. Phys. J. A 53, 207 (2017). https://doi.org/10.1140/epja/i2017-12398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12398-x

Navigation