Skip to main content
Log in

Rotational structure of odd-proton 103, 105, 107, 109, 111Tc isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A systematic study of the yrast band structure for the neutron-rich odd-mass 103-111Tc nuclei is carried out using Projected Shell Model. The rotational band structure has been studied up to a maximum spin of \( 59/2^{+}\) . Excellent agreement with available experimental data for all isotopes is obtained. The energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states are studied in detail. Signature splitting in the yrast rotational band is well described in the perspective of nuclear structure physics. The back-bending phenomenon is also well described for these nuclei in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  2. J. Skalski, S. Mizutori, W. Nazarewicz, Nucl. Phys. A 617, 282 (1997)

    Article  ADS  Google Scholar 

  3. G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71, 1 (1999)

    Article  ADS  Google Scholar 

  4. A. Bharti, S.K. Khosa, Phys. Rev. C 53, 2528 (1996)

    Article  ADS  Google Scholar 

  5. A. Bauchet et al., Eur. Phys. J. A 10, 145 (2001)

    Article  ADS  Google Scholar 

  6. J.K. Hwang et al., Phys. Rev. C 57, 2250 (1998)

    Article  ADS  Google Scholar 

  7. Y.X. Luo et al., Phys. Rev. C 70, 044310 (2004)

    Article  ADS  Google Scholar 

  8. J. Kurpeta et al., Phys. Rev. C 86, 044306 (2012)

    Article  ADS  Google Scholar 

  9. W. Urban et al., Eur. Phys. J. A 24, 161 (2005)

    Article  ADS  Google Scholar 

  10. Y.X. Luo et al., Phys. Rev. C 74, 024308 (2006)

    Article  ADS  Google Scholar 

  11. M. Bernas et al., Phys. Lett. B 331, 19 (1994)

    Article  ADS  Google Scholar 

  12. J. Kurpeta et al., Phys. Rev. C 84, 044304 (2011)

    Article  ADS  Google Scholar 

  13. Y.X. Liu et al., Nucl. Phys. A 858, 11 (2011)

    Article  ADS  Google Scholar 

  14. C. Sharma, P. Verma, S. Singh, A. Bharti, S.K. Khosa, Int. J. Mod. Phys. E 21, 1250081 (2012)

    Article  ADS  Google Scholar 

  15. A. Bhat, A. Bharti, S.K. Khosa, Int. J. Mod. Phys. E 21, 1250030 (2012)

    Article  ADS  Google Scholar 

  16. A. Bhat, A. Bharti, S.K. Khosa, Eur. Phys. J. A 48, 39 (2012)

    Article  ADS  Google Scholar 

  17. A. Kumar et al., Int. J. Mod. Phys. E 24, 1550076 (2015)

    Article  ADS  Google Scholar 

  18. V. Velázquez, J.G. Hirsch, Y. Sun, Nucl. Phys. A 686, 129 (2001)

    Article  ADS  Google Scholar 

  19. K. Hara, Y. Sun, Nucl. Phys. A 537, 77 (1992)

    Article  ADS  Google Scholar 

  20. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)

    Article  ADS  Google Scholar 

  21. Y. Sun, Phys. Scr. 91, 043005 (2016)

    Article  ADS  Google Scholar 

  22. S.G. Nilsson et al., Nucl. Phys. A 131, 1 (1969)

    Article  ADS  Google Scholar 

  23. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980)

  24. J.Y. Zhang, N. Xu, D.B. Fossan, Y. Liang, R. Ma, E.S. Paul, Phys. Rev. C 39, 714 (1989)

    Article  ADS  Google Scholar 

  25. D. De Frenne, Nucl. Data Sheets 110, 1745 (2009)

    Article  ADS  Google Scholar 

  26. J. Blachot, Nucl. Data Sheets 108, 2035 (2007)

    Article  ADS  Google Scholar 

  27. D. De Frenne, A. Negret, Nucl. Data Sheets 109, 943 (2008)

    Article  ADS  Google Scholar 

  28. J. Blachot, Nucl. Data Sheets 91, 135 (2000)

    Article  ADS  Google Scholar 

  29. G.G. Urdal, F.G. Kondev, Nucl. Data Sheets 113, 1315 (2012)

    Article  ADS  Google Scholar 

  30. L. Grodzin, Phys. Lett. 2, 88 (1962)

    Article  ADS  Google Scholar 

  31. H. Dejbakhsh, S. Shlomo, Phys. Rev. C 48, 1695 (1993)

    Article  ADS  Google Scholar 

  32. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)

  33. D. De Frenne, Nucl. Data Sheets 110, 2081 (2009)

    Article  ADS  Google Scholar 

  34. D. De Frenne, E. Jacobs, Nucl. Data Sheets 105, 775 (2005)

    Article  ADS  Google Scholar 

  35. J. Blachot, Nucl. Data Sheets 109, 1383 (2008)

    Article  ADS  Google Scholar 

  36. S. Kumar, J. Chen, F.G. Kondev, Nucl. Data Sheets 137, 1 (2016)

    Article  ADS  Google Scholar 

  37. J. Blachot, Nucl. Data Sheets 110, 1239 (2009)

    Article  ADS  Google Scholar 

  38. A. Ibáñnez-Sandoval, M.E. Ortiz, V. Velázquez, A. Galindo-Uribarri, P.O. Hess, Y. Sun, Phys. Rev. C 83, 034308 (2011)

    Article  ADS  Google Scholar 

  39. M. Sugawara et al., Nucl. Phys. A 699, 450 (2002)

    Article  ADS  Google Scholar 

  40. N. Tajima, Nucl. Phys. A 572, 365 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Bharti.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, D., Singh, S. et al. Rotational structure of odd-proton 103, 105, 107, 109, 111Tc isotopes. Eur. Phys. J. A 53, 200 (2017). https://doi.org/10.1140/epja/i2017-12391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12391-5

Navigation