Dynamics of complete and incomplete fusion of 6,7Li, 15N and 16O with a 209Bi target

Regular Article - Theoretical Physics


The dynamics of complete and incomplete fusion of 6,7Li, 15N and 16O with a common target (209Bi) around the Coulomb barrier are analyzed within the context of the coupled channel formulation and the energy dependent Woods-Saxon potential (EDWSP) model. The calculated results are compared with experimental fusion cross-sections and it has been shown that complete fusion (CF) data of weakly bound projectile with a heavy target (209Bi) gets suppressed at above barrier energies. In the case of the 6Li + 209Bi (7Li + 209Bi) reaction, the CF data at above barrier energies is reduced by 34% (26%) with reference to the expectations of the coupled channel approach. However, the theoretical estimations due to the EDWSP model can minimize the suppression factor by 9% with respect to the reported value and consequently the portion of above barrier CF cross-section data of 6Li + 209Bi (7Li + 209Bi) reaction is suppressed by 25% (17%) when compared with the present model calculations. This fusion inhibition can be correlated with the low breakup threshold of projectile which in turn breaks up into two fragments in the entrance channel prior to fusion barrier. The total fusion (TF) data, which is sum of complete fusion (CF) data and incomplete fusion (ICF) data, is not suppressed when compared with the predictions of the theoretical approaches and thus breakup channel has very little influence on the total fusion cross-sections. Although the breakup fragments appeared in both reactions, the enhanced suppression effects observed for the lighter projectile can be correlated with its low binding energy associated with the \(\alpha\)-breakup channel. Further the outcomes of the EDWSP model reasonably explained the ICF contribution appeared in the fusion of 6,7Li + 209Bi reactions. In contrast to this, the observed fusion dynamics of 15N + 209Bi and 16O + 209Bi reactions, wherein the collective excitations such as two phonon, three phonon vibrational states contribute to produce below barrier fusion enhancement, has been adequately explored by the adopted models, and henceforth ensures the stability of well bound nuclei against breakup effects.


  1. 1.
    L.C. Vaz, J.M. Alexander, G.R. Satchler, Phys. Rep. 69, 373 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    A.B. Balantekin, N. Takigawa, Rev. Mod. Phys. 70, 77 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    L.F. Canto, P.R.S. Gomes, R. Donangelo, M.S. Hussein, Phys. Rep. 424, 1 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J. Zhang, C. Wang, Z. Ren, Nucl. Phys. A 864, 128 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    V.V. Parkar, V. Jha, S. Kailas, Phys. Rev. C 94, 024609 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    J. lei, A.M. Moro, Phys. Rev. C 92, 044616 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    H.D. Marta, L.F. Canto, R. Donangelo, Phys. Rev. C 89, 034625 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J. Takahashi, M. Munhoz, E.M. Szanto, N. Carlin, N. Added, A.A.P. Suaide, M.M. de Moura, R. Liguori Neto, A. Szanto de Toledo, L.F. Canto, Phys. Rev. Lett. 78, 30 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    Y.W. Wu, Z.H. Liu, C.J. Lin, H.Q. Zhang, M. Ruan, F. Yang, Z.C. Li, M. Trotta, K. Hagino, Phys. Rev. C 68, 044605 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A. Mukherjee, Subinit Roy, M.K. Pradhan, M. Saha Sarkar, P. Basu a, B. Dasmahapatra, T. Bhattacharya, S. Bhattacharya, S.K. Basu, A. Chatterjee, V. Tripathi, S. Kailas, Phys. Lett. B 636, 91 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Y.D. Fang, P.R.S. Gomes, J. Lubian, M.L. Liu, X.H. Zhou, D.R. Mendes Junior, N.T. Zhang, Y.H. Zhang, G.S. Li, J.G. Wang, S. Guo, Y.H. Qiang, B.S. Gao,Y. Zheng, X.G. Lei, Z.G. Wang, Phys. Rev. C 91, 014608 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    V.V. Parkar, R. Palit, Sushil K. Sharma, B.S. Naidu, S. Santra, P.K. Joshi, P.K. Rath, K. Mahata, K. Ramachandran, T. Trivedi, A. Raghav, Phys. Rev. C 82, 054601 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M.S. Hussein, M.P. Pato, A.F.R. de Toledo Piza, Phys. Rev. C 51, 846 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    C.H. Dasso, A. Vitturi, Phys. Rev. C 50, R12 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    R. Rusek, N. Keeley, K.W. Kemper, R. Raabe, Phys. Rev. C 67, 041604R (2003)ADSCrossRefGoogle Scholar
  16. 16.
    C. Beck, F.A. Souza, N. Rowley, S.J. Sanders, N. Aissaoui, E.E. Alonso, P. Bednarczyk, N. Carlin, S. Courtin, A. Diaz-Torres, A. Dummer, F. Haas, A. Hachem, K. Hagino, F. Hoellinger, R.V.F. Janssens, N. Kintz, R. Liguori Neto, E. Martin, M.M. Moura, M.G. Munhoz, P. Papka, M. Rousseau, A. Sanchezi Zafra, O. Stezowski, A.A. Suaide, E.M. Szanto, A. Szanto de Toledo, S. Szilner, J. Takahashi, Phys. Rev. C 67, 054602 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    C.S. Palshetkar, S. Santra, A. Chatterjee, K. Ramachandran, Shital Thakur, S.K. Pandit, K. Mahata, A. Shrivastava, V.V. Parkar, V. Nanal, Phys. Rev. C 82, 044608 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    A. Diaz-Torres, I.J. Thompson, Phys. Rev. C 65, 024606 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    N. Keeley, K.W. Kemper, R. Rusek, Phys. Rev. C 65, 014601 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    K. Hagino, A. Vitturi, C.H. Dasso, S.M. Lenzi, Phys. Rev. C 61, 037602 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    A. Diaz-Torres, I.J. Thompson, C. Beck, Phys. Rev. C 68, 044607 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    M. Dasgupta, D.J. Hinde, K. Hagino, S.B. Moraes, P.R.S. Gomes, R.M. Anjos, R.D. Butt, A.C. Berriman, N. Carlin, C.R. Morton, J.O. Newton, A. Szanto de Toledo, Phys. Rev. C 66, 041602(R) (2002)ADSCrossRefGoogle Scholar
  23. 23.
    M. Dasgupta, P.R.S. Gomes, D.J. Hinde, S.B. Moraes, R.M. Anjos, A.C. Berriman, R.D. Butt, N. Carlin, J. Lubian, C.R. Morton, J.O. Newton, A. Szanto de Toledo, Phys. Rev. C 70, 024606 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    E. Vulgaris, L. Grodzins, S.G. Steadman, R. Leodux, Phys. Rev. C 33, 2017 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    M. Singh, Sukhvinder, R. Kharab, Mod. Phys. Lett. A 26, 2129 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M. Singh, Sukhvinder, R. Kharab, Nucl. Phys. A 897, 179 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    M. Singh, Sukhvinder, R. Kharab, Nucl. Phys. A 897, 198 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M. Singh, Sukhvinder, R. Kharab, AIP Conf. Proc. 1524, 163 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M. Singh, Sukhvinder, R. Kharab, EPJ Web of Conferences 66, 03043 (2014)CrossRefGoogle Scholar
  30. 30.
    M.S. Gautam, Phys. Rev. C 90, 024620 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M.S. Gautam, Nucl. Phys. A 933, 272 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    M.S. Gautam, Mod. Phys. Lett. A 30, 1550013 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    M.S. Gautam, Phys. Scr. 90, 025301 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    M.S. Gautam, Phys. Scr. 90, 055301 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Gautam, Phys. Scr. 90, 125301 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M.S. Gautam, Can. J. Phys. 93, 1343 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    M.S. Gautam, Commun. Theor. Phys. 64, 710 (2015)CrossRefGoogle Scholar
  38. 38.
    M.S. Gautam, Acta Phys. Pol. B 46, 1055 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M.S. Gautam, Indian J. Phys. 90, 335 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    M.S. Gautam, Braz. J. Phys. 46, 143 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    M.S. Gautam, Neha Grover, M.K. Sharma, Eur. Phys. J. A 53, 12 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    M.S. Gautam, Amandeep Kaur, M.K. Sharma, Phys. Rev. C 92, 054605 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    M.S. Gautam, Rajni, M.K. Sharma, Braz. J. Phys. 46, 133 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    M.S. Gautam, M.K. Sharma, AIP Conf. Proc. 1675, 020052 (2015)CrossRefGoogle Scholar
  45. 45.
    K. Hagino, N. Rowley, A.T. Kruppa, Comput. Phys. Commun. 123, 143 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    K. Hagino, private communicationGoogle Scholar
  47. 47.
    D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)ADSCrossRefGoogle Scholar
  48. 48.
    C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)ADSCrossRefGoogle Scholar
  49. 49.
    A.V. Karpov, V.A. Rachkov, V.V. Samarin, Phys. Rev. C 92, 064603 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    K. Hagino, N. Takigawa, M. Dasgupta, D.J. Hinde, J.R. Leigh, J. Phys. G 23, 1413 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Rev. Mod. Phys. 86, 317 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    E.F. Aguilera, J.J. Kolata, F.D. Becchetti, P.A.D. Young, J.D. Hinnefeld, A. Horváth, L.O. Lamm, Hye-Young Lee, D. Lizcano, E. Martinez-Quiroz, P. Mohr, T.W.O. Donnell, D.A. Roberts, G. Rogache, Phys. Rev. C 63, 061603 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    W.T. Wanger, G.M. Crawley, G.R. Hammerstein, Phys. Rev. C 11, 486 (1975)ADSCrossRefGoogle Scholar
  54. 54.
    M.J. Martin, Nucl. Data Sheets 63, 723 (1991)ADSCrossRefGoogle Scholar
  55. 55.
    C. Beck, Nucl. Phys. A 787, 251C (2007)ADSCrossRefGoogle Scholar
  56. 56.
    C. Beck, Nucl. Phys. A 834, 440C (2010)ADSCrossRefGoogle Scholar
  57. 57.
    P.K. Rath, S. Santra, N.L. Singh, R. Tripathi, V.V. Parkar, B.K. Nayak, K. Mahata, R. Palit, Suresh Kumar, S. Mukherjee, S. Appannababu, R.K. Choudhury, Phys. Rev. C 79, 051601 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    P.K. Rath, S. Santra, N.L. Singh, K. Mahata, R. Palit, B.K. Nayak, K. Ramachandran, V.V. Parkar, R. Tripathi, S.K. Pandit, S. Appannababu, N.N. Deshmukh, R.K. Choudhury, S. Kailas, Nucl. Phys. A 874, 14 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    M.K. Pradhan, A. Mukherjee, P. Basu, A. Goswami, R. Kshetri, S. Roy, P.R. Chowdhury, M.S. Sarkar, R. Palit, V.V. Parkar, S. Santra, M. Ray, Phys. Rev. C 83, 064606 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    D.R. Otomar, J. Lubian, P.R.S. Gomes, D.S. Monteiro, O.A. Capurro, A. Arazi, J.O. Fernandez Niello, J.M. Figueira, G.V. Mart, D. Martinez Heimann, A.E. Negri, A.J. Pacheco, V. Guimaraes, L.C. Chamon, Phys. Rev. C 80, 034614 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    D.R. Otomar, J. Lubian, P.R.S. Gomes, Eur. Phys. J. A 46, 285 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    D.H. Luong, D.H. Luong, M. Dasgupta, D.J. Hinde, R. du Rietz, R. Rafiei, C.J. Lin, M. Evers, A. Diaz-Torres, Phys. Rev. C 88, 034609 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    H. Kumawat, V. Jha, V.V. Parkar, B.J. Roy, S.K. Pandit, R. Palit, P.K. Rath, C.S. Palshetkar, Sushil K. Sharma, Shital Thakur, A.K. Mohanty, A. Chatterjee, S. Kailas, Phys. Rev. C 86, 024607 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    A. Gomez Camacho, E.F. Aguilera, P.R.S. Gomes, J. Lubian, Phys. Rev. C 86, 024607 (2012)CrossRefGoogle Scholar
  65. 65.
    P.R.S. Gomes, J. Lubian, B. Paes, V.N. Garcia, D.S. Monteiro, I. Padron, J.M. Figueira, A. Arazi, O.A. Capurro, L. Fimiani, A.E. Negri, G.V. Marti, J.O. Fernandez Niello, A. Gomez Camacho, L.F. Canto, Phys. Rev. C 86, 024607 (2012)CrossRefGoogle Scholar
  66. 66.
    E. Crema, L.C. Chamon, P.R.S. Gomes, Phys. Rev. C 72, 034610 (2005)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Manjeet Singh Gautam
    • 1
  • K. Vinod
    • 1
  • Hitender Khatri
    • 2
  1. 1.Department of PhysicsIndus Degree CollegeKinana, JindIndia
  2. 2.Department of PhysicsDr. B. R. Ambedekar Institute of TechnologyPort BlairIndia

Personalised recommendations