Decay properties of charm and bottom mesons in a quantum isotonic nonlinear oscillator potential model

Abstract.

Employing generalized quantum isotonic oscillator potential we determine wave function for mesonic system in nonrelativistic formalism. Then we investigate branching ratios of leptonic decays for heavy-light mesons including a charm quark. Next, by applying the Isgur-Wise function we obtain branching ratios of semileptonic decays for mesons including a bottom quark. The weak decay of the \( B_{c}\) meson is also analyzed to study the life time. Comparison with other available theoretical approaches is presented.

This is a preview of subscription content, access via your institution.

References

  1. 1

    E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978)

    ADS  Article  Google Scholar 

  2. 2

    D. Ebert, R.N. Faustov, V.O. Galkin, Eur. Phys. J. C 32, 29 (2003)

    ADS  Article  Google Scholar 

  3. 3

    C. Quigg, J.L. Rosner, Phys. Lett. B 71, 153 (1977)

    ADS  Article  Google Scholar 

  4. 4

    A. Martin, Phys. Lett. B 93, 338 (1980)

    ADS  Article  Google Scholar 

  5. 5

    R. Kumar, F. Chand, Commun. Theor. Phys. 59, 528 (2013)

    Article  Google Scholar 

  6. 6

    L.S. Geng, M. Altenbuchinger, W. Weise, Phys. Lett. B 696, 390 (2011)

    ADS  Article  Google Scholar 

  7. 7

    K.K. Pathak, D.K. Choudhury, Pramana J. Phys. 79, 1385 (2012)

    ADS  Article  Google Scholar 

  8. 8

    J.O. Eeg, K. Kumerički, Phys. Rev. D 81, 074015 (2010)

    ADS  Article  Google Scholar 

  9. 9

    Z. Ligeti, Y. Nir, M. Neubert, Phys. Rev. D 49, 1302 (1994)

    ADS  Article  Google Scholar 

  10. 10

    M.Q. Huang, Y.B. Dai, Phys. Rev. D 64, 014034 (2001)

    ADS  Article  Google Scholar 

  11. 11

    S.P. Booth et al., Phys. Rev. Lett. 72, 462 (1994)

    ADS  Article  Google Scholar 

  12. 12

    M. Sadzikowski, K. Zalewski, Z Phys. C 59, 677 (1993)

    ADS  Article  Google Scholar 

  13. 13

    N. Saad, R.L. Hall, H. Ciftci, O. Yesiltas, Adv. Math. Phys. 2011, 750168 (2011)

    Article  Google Scholar 

  14. 14

    A.K. Rai, B. Patel, P.C. Vinodkumar, Phys. Rev. C 78, 055202 (2008)

    ADS  Article  Google Scholar 

  15. 15

    B. Patel, P.C. Vinodkumar, Chin. Phys. C 34, 1497 (2010)

    ADS  Article  Google Scholar 

  16. 16

    S. Roy, N.S. Bordoloi, D.K. Choudhury, Can. J. Phys. 91, 34 (2013)

    ADS  Article  Google Scholar 

  17. 17

    I.J.R. Aitchison, J.J. Dudek, Eur. J. Phys. 23, 605 (2002)

    Article  Google Scholar 

  18. 18

    V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, Phys. At. Nucl. 64, 1860 (2001)

    Article  Google Scholar 

  19. 19

    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Lett. B 635, 93 (2006)

    ADS  Article  Google Scholar 

  20. 20

    K.B. Bhaghyesh, V. Kumar, A.P. Monteiro, J. Phys. G: Nucl. Part. Phys. 38, 085001 (2011)

    ADS  Article  Google Scholar 

  21. 21

    UKQCD Collaboration (K.C. Bowler et al.), Phys. Rev. D 52, 5067 (1995)

    Article  Google Scholar 

  22. 22

    K.K. Pathak, D.K. Choudhury, J. Mod. Phys. 3, 821 (2012)

    Article  Google Scholar 

  23. 23

    H.K. Quang, X.Y. Pham, Elementary Particles and Their Interaction (Springer, 1998)

  24. 24

    C. Aubin et al., Phys. Rev. Lett. 95, 122002 (2005)

    ADS  Article  Google Scholar 

  25. 25

    M.Z. Yang, Eur. Phys. J. C 72, 1880 (2012)

    ADS  Article  Google Scholar 

  26. 26

    Z.G. Wang, W.M. Yang, S.L. Wan, Nucl. Phys. A 744, 156 (2004)

    ADS  Article  Google Scholar 

  27. 27

    CLEO Collaboration (M. Artuso et al.), Phys. Rev. Lett. 95, 251801 (2005)

    Article  Google Scholar 

  28. 28

    Heavy Flavor Averaging Group (D. Asner) arXiv:1010.1589

  29. 29

    B.J. Hazarika, D.K. Choudhury, Braz. J. Phys. 41, 159 (2011)

    ADS  Article  Google Scholar 

  30. 30

    Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  31. 31

    E. Jenkins, M. Luke, A.V. Manohar, M. Savage, Nucl. Phys. B 390, 463 (1993)

    ADS  Article  Google Scholar 

  32. 32

    M. Atoui, D. Becirevic, V. Morenas, F. Sanfilippo, Eur. Phys. J. C 74, 2861 (2014)

    ADS  Article  Google Scholar 

  33. 33

    R.N. Faustov, V.O. Galkin, Phys. Rev. D 87, 034033 (2013)

    ADS  Article  Google Scholar 

  34. 34

    D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 68, 094020 (2003)

    ADS  Article  Google Scholar 

  35. 35

    A.A. El-Hady, M.A.K. Lodhi, J.P. Vary, Phys. Rev. D 59, 094001 (1999)

    ADS  Article  Google Scholar 

  36. 36

    C.H. Chang, C.D. Lü, G.L. Wang, H.S. Zong, Phys. Rev. D 60, 114013 (1999)

    ADS  Article  Google Scholar 

  37. 37

    S. Faller, A. Khodjamirian, Ch. Klein, Th. Mannel, Eur. Phys. J. C 60, 603 (2009)

    ADS  Article  Google Scholar 

  38. 38

    CLEO Collaboration (J. Bartlet et al.), Phys. Rev. Lett. 82, 3746 (1999)

    Article  Google Scholar 

  39. 39

    BELLE Collaboration (K. Abe et al.), Phys. Lett. B 526, 258 (2002)

    ADS  Article  Google Scholar 

  40. 40

    H.M. Choi, C.R. Ji, Phys. Rev. D 80, 114003 (2009)

    ADS  Article  Google Scholar 

  41. 41

    A.Yu. Anisimov, I.M. Narodetskii, C. Semay, B. Silvestre-Brac, Phys. Lett. B 452, 129 (1999)

    ADS  Article  Google Scholar 

  42. 42

    M.A. Nobes, R.M. Woloshyn, J. Phys. G: Nucl. Part. Phys. 26, 1079 (2000)

    ADS  Article  Google Scholar 

  43. 43

    E. Bagan, H.G. Dosch, P. Gosdzinsky, S. Narison, J.M. Richard, Z. Phys. C 64, 57 (1994)

    ADS  Article  Google Scholar 

  44. 44

    C.T.H. Davies, C. McNeile, E. Follana, G.P. Lepage, H. Na, J. Shigemitsu, Phys. Rev. D 82, 114504 (2010)

    ADS  Article  Google Scholar 

  45. 45

    P. Blasi, P. Colangelo, G. Nardulli, N. Paver, Phys. Rev. D 49, 238 (1994)

    ADS  Article  Google Scholar 

  46. 46

    R.H. Li, C.D. Lu, Y.M. Wang, Phys. Rev. D 80, 014005 (2009)

    ADS  Article  Google Scholar 

  47. 47

    X.J. Chen, H.F. Fu, C.S. Kim, G.L. Wang, J. Phys. G 39, 045002 (2012)

    ADS  Article  Google Scholar 

  48. 48

    M.A. Ivanov, J.G. Körner, V.E. Lyubovitskij, A.G. Rusetsky, Phys. Rev. D 59, 074016 (1999)

    ADS  Article  Google Scholar 

  49. 49

    F. Palombo, arXiv:1104.1420 [hep-ex]

  50. 50

    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010)

    ADS  Article  Google Scholar 

  51. 51

    S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    ADS  Article  Google Scholar 

  52. 52

    V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, Nucl. Phys. B 585, 353 (2000)

    ADS  Article  Google Scholar 

  53. 53

    UKQCD Collaboration (L. Lellouch, C.J. Lin), Phys. Rev. D 64, 094501 (2001)

    Google Scholar 

  54. 54

    C.W. Hwang, Phys. Rev. D 81, 114024 (2010)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Rahmani.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahmani, S., Hassanabadi, H. Decay properties of charm and bottom mesons in a quantum isotonic nonlinear oscillator potential model. Eur. Phys. J. A 53, 187 (2017). https://doi.org/10.1140/epja/i2017-12374-6

Download citation