Three-body unitarity with isobars revisited

  • M. Mai
  • B. Hu
  • M. Döring
  • A. Pilloni
  • A. Szczepaniak
Regular Article - Theoretical Physics

Abstract.

The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the \(3\rightarrow 3\) scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes.

References

  1. 1.
    COMPASS Collaboration (P. Abbon et al.), Nucl. Instrum. Methods A 577, 455 (2007) arXiv:hep-ex/0703049 [hep-ex]CrossRefGoogle Scholar
  2. 2.
    GlueX Collaboration (H. Al Ghoul et al.), AIP Conf. Proc. 1735, 020001 (2016) arXiv:1512.03699 [nucl-ex]CrossRefGoogle Scholar
  3. 3.
    D.I. Glazier, Acta Phys. Pol. Suppl. 8, 503 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Mikhasenko, B. Ketzer, A. Sarantsev, Phys. Rev. D 91, 094015 (2015) arXiv:1501.07023 [hep-ph]ADSCrossRefGoogle Scholar
  5. 5.
    R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017) arXiv:1610.04528 [hep-ph]ADSCrossRefGoogle Scholar
  6. 6.
    A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rep. 668, 1 (2016) arXiv:1611.07920 [hep-ph]ADSCrossRefGoogle Scholar
  7. 7.
    F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, arXiv:1705.00141 [hep-ph] (2017)
  8. 8.
    LHCb Collaboration (A.A. Alves Jr. et al.), JINST 3, S08005 (2008)Google Scholar
  9. 9.
    BESIII Collaboration (S. Fang), Nucl. Part. Phys. Proc. 273-275, 1949 (2016)CrossRefGoogle Scholar
  10. 10.
    Belle, BaBar Collaboration (A. Bevan et al.), Eur. Phys. J. C 74, 3026 (2014) arXiv:1406.6311 [hep-ex]ADSCrossRefGoogle Scholar
  11. 11.
    I.J.R. Aitchison, J.J. Brehm, Phys. Rev. D 17, 3072 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    M.T. Hansen, S.R. Sharpe, Phys. Rev. D 90, 116003 (2014) arXiv:1408.5933 [hep-lat]ADSCrossRefGoogle Scholar
  13. 13.
    M.T. Hansen, S.R. Sharpe, Phys. Rev. D 92, 114509 (2015) arXiv:1504.04248 [hep-lat]ADSCrossRefGoogle Scholar
  14. 14.
    R.A. Briceño, M.T. Hansen, S.R. Sharpe, Phys. Rev. D 95, 074510 (2017) arXiv:1701.07465 [hep-lat]ADSCrossRefGoogle Scholar
  15. 15.
    U.-G. Meißner, G. Ríos, A. Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) 117ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    K. Polejaeva, A. Rusetsky, Eur. Phys. J. A 48, 67 (2012) arXiv:1203.1241 [hep-lat]ADSCrossRefGoogle Scholar
  17. 17.
    L. Roca, E. Oset, Phys. Rev. D 85, 054507 (2012) arXiv:1201.0438 [hep-lat]ADSCrossRefGoogle Scholar
  18. 18.
    D. Agadjanov, M. Döring, M. Mai, U.-G. Meißner, A. Rusetsky, JHEP 06, 043 (2016) arXiv:1603.07205 [hep-lat]ADSCrossRefGoogle Scholar
  19. 19.
    H.W. Hammer, J.Y. Pang, A. Rusetsky, arXiv:1706.07700 [hep-lat] (2017)
  20. 20.
    H.W. Hammer, J.Y. Pang, A. Rusetsky, arXiv:1707.02176 [hep-lat] (2017)
  21. 21.
    N.N. Khuri, S.B. Treiman, Phys. Rev. 119, 1115 (1960)ADSCrossRefGoogle Scholar
  22. 22.
    F. Niecknig, B. Kubis, S.P. Schneider, Eur. Phys. J. C 72, 2014 (2012) arXiv:1203.2501 [hep-ph]ADSCrossRefGoogle Scholar
  23. 23.
    S.P. Schneider, B. Kubis, F. Niecknig, Phys. Rev. D 86, 054013 (2012) arXiv:1206.3098 [hep-ph]ADSCrossRefGoogle Scholar
  24. 24.
    I.V. Danilkin, C. Fernández-Ramírez, P. Guo, V. Mathieu, D. Schott, M. Shi, A.P. Szczepaniak, Phys. Rev. D 91, 094029 (2015) arXiv:1409.7708 [hep-ph]ADSCrossRefGoogle Scholar
  25. 25.
    P. Guo, I.V. Danilkin, D. Schott, C. Fernández-Ramírez, V. Mathieu, A.P. Szczepaniak, Phys. Rev. D 92, 054016 (2015) arXiv:1505.01715 [hep-ph]ADSCrossRefGoogle Scholar
  26. 26.
    F. Niecknig, B. Kubis, JHEP 10, 142 (2015) arXiv:1509.03188 [hep-ph]ADSCrossRefGoogle Scholar
  27. 27.
    P. Guo, I.V. Danilkin, C. Fernández-Ramírez, V. Mathieu, A.P. Szczepaniak, Phys. Lett. B 771, 497 (2017) arXiv:1608.01447 [hep-ph]ADSCrossRefGoogle Scholar
  28. 28.
    M. Albaladejo, B. Moussallam, arXiv:1702.04931 [hep-ph] (2017)
  29. 29.
    T. Isken, B. Kubis, S.P. Schneider, P. Stoffer, Eur. Phys. J. C 77, 489 (2017) arXiv:1705.04339 [hep-ph]CrossRefGoogle Scholar
  30. 30.
    E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967)ADSCrossRefGoogle Scholar
  31. 31.
    A. Martinez Torres, K.P. Khemchandani, E. Oset, Phys. Rev. C 77, 042203 (2008) arXiv:0706.2330 [nucl-th]ADSCrossRefGoogle Scholar
  32. 32.
    P.C. Magalhaes, M.R. Robilotta, K.S.F.F. Guimaraes, T. Frederico, W. de Paula, I. Bediaga, A.C.d. Reis, C.M. Maekawa, G.R.S. Zarnauskas, Phys. Rev. D 84, 094001 (2011) arXiv:1105.5120 [hep-ph]ADSCrossRefGoogle Scholar
  33. 33.
    A. Martinez Torres, K.P. Khemchandani, D. Jido, A. Hosaka, Phys. Rev. D 84, 074027 (2011) arXiv:1106.6101 [nucl-th]ADSCrossRefGoogle Scholar
  34. 34.
    M. Mai, V. Baru, E. Epelbaum, A. Rusetsky, Phys. Rev. D 91, 054016 (2015) arXiv:1411.4881 [nucl-th]ADSCrossRefGoogle Scholar
  35. 35.
    R. Aaron, R.D. Amado, J.E. Young, Phys. Rev. 174, 2022 (1968)ADSCrossRefGoogle Scholar
  36. 36.
    R. Aaron, R.D. Amado, Phys. Rev. Lett. 31, 1157 (1973)ADSCrossRefGoogle Scholar
  37. 37.
    R.D. Amado, Phys. Rev. Lett. 33, 333 (1974)ADSCrossRefGoogle Scholar
  38. 38.
    R. Aaron, R.H. Thompson, R.D. Amado, R.A. Arndt, D.C. Teplitz, V.L. Teplitz, Phys. Rev. D 12, 1984 (1975)ADSCrossRefGoogle Scholar
  39. 39.
    R.D. Amado, Phys. Rev. C 12, 1354 (1975)ADSCrossRefGoogle Scholar
  40. 40.
    R. Aaron, R.D. Amado, Phys. Rev. D 13, 2581 (1976)ADSCrossRefGoogle Scholar
  41. 41.
    R. Aaron, R.D. Amado, R.A. Arndt, Y. Goradia, D.C. Teplitz, V.L. Teplitz, Phys. Rev. D 16, 50 (1977)ADSCrossRefGoogle Scholar
  42. 42.
    R. Aaron, A relativistic three-body theory, in Modern Three-Hadron Physics, edited by A.W. Thomas (Springer Berlin Heidelberg, Berlin, Heidelberg, 1977) pp. 139--179Google Scholar
  43. 43.
    D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner, K. Nakayama, Eur. Phys. J. A 49, 44 (2013) arXiv:1211.6998 [nucl-th]ADSCrossRefGoogle Scholar
  44. 44.
    D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J. Haidenbauer, U.-G. Meißner, K. Nakayama, Eur. Phys. J. A 51, 70 (2015) arXiv:1504.01643 [nucl-th]ADSCrossRefGoogle Scholar
  45. 45.
    H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Phys. Rev. C 88, 035209 (2013) arXiv:1305.4351 [nucl-th]ADSCrossRefGoogle Scholar
  46. 46.
    H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Phys. Rev. C 90, 065204 (2014) arXiv:1407.6839 [nucl-th]ADSCrossRefGoogle Scholar
  47. 47.
    V. Baru, E. Epelbaum, A.A. Filin, F.K. Guo, H.W. Hammer, C. Hanhart, U.-G. Meißner, A.V. Nefediev, Phys. Rev. D 91, 034002 (2015) arXiv:1501.02924 [hep-ph]ADSCrossRefGoogle Scholar
  48. 48.
    V. Baru, E. Epelbaum, A.A. Filin, J. Gegelia, A.V. Nefediev, Phys. Rev. D 92, 114016 (2015) arXiv:1509.01789 [hep-ph]ADSCrossRefGoogle Scholar
  49. 49.
    V. Baru, A.A. Filin, C. Hanhart, Yu.S. Kalashnikova, A.E. Kudryavtsev, A.V. Nefediev, Phys. Rev. D 84, 074029 (2011) arXiv:1108.5644 [hep-ph]ADSCrossRefGoogle Scholar
  50. 50.
    T. Mizutani, C. Fayard, B. Saghai, L. Tsushima, Phys. Rev. C 87, 035201 (2013) arXiv:1211.5824 [hep-ph]ADSCrossRefGoogle Scholar
  51. 51.
    R.S. Longacre, Phys. Rev. D 42, 874 (1990)ADSCrossRefGoogle Scholar
  52. 52.
    I.R. Afnan, Phys. Rev. C 38, 1792 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    A.W. Thomas, Nucl. Phys. A 258, 417 (1976)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Avishai, T. Mizutani, Nucl. Phys. A 338, 377 (1980)ADSCrossRefGoogle Scholar
  55. 55.
    G. Mennessier, J.Y. Pasquier, R. Pasquier, Phys. Rev. D 6, 1351 (1972)ADSCrossRefGoogle Scholar
  56. 56.
    S. Ceci, M. Döring, C. Hanhart, S. Krewald, U.-G. Meißner, A. Svarc, Phys. Rev. C 84, 015205 (2011) arXiv:1104.3490 [nucl-th]ADSCrossRefGoogle Scholar
  57. 57.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Nucl. Phys. A 829, 170 (2009) arXiv:0903.4337 [nucl-th]ADSCrossRefGoogle Scholar
  58. 58.
    H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Phys. Rev. D 84, 114019 (2011) arXiv:1106.4523 [hep-ph]ADSCrossRefGoogle Scholar
  59. 59.
    S.X. Nakamura, Phys. Rev. D 93, 014005 (2016) arXiv:1504.02557 [hep-ph]ADSCrossRefGoogle Scholar
  60. 60.
    P. Guo, I.V. Danilkin, A.P. Szczepaniak, Eur. Phys. J. A 51, 135 (2015) arXiv:1409.8652 [hep-ph]ADSCrossRefGoogle Scholar
  61. 61.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, in Advanced Book Classics (Avalon Publishing, 1995)Google Scholar
  62. 62.
    R. Blankenbecler, R. Sugar, Phys. Rev. 142, 1051 (1966)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. Mai
    • 1
  • B. Hu
    • 1
  • M. Döring
    • 1
    • 2
  • A. Pilloni
    • 2
  • A. Szczepaniak
    • 2
    • 3
    • 4
  1. 1.The George Washington UniversityWashingtonUSA
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsUSA
  3. 3.Center for Exploration of Energy and MatterIndiana UniversityBloomingtonUSA
  4. 4.Physics DepartmentIndiana UniversityBloomingtonUSA

Personalised recommendations