Polarized heavy baryon production in quark-diquark model considering two different scenarios

Regular Article - Theoretical Physics

Abstract.

At sufficiently large transverse momentum, the dominant production mechanism for heavy baryons is actually the fragmentation. In this work, we first study the direct fragmentation of a heavy quark into the unpolarized triply heavy baryons in the leading order of perturbative QCD. In a completely different approach, we also analyze the two-stage fragmentation of a heavy quark into a scalar diquark followed by the fragmentation of such a scalar diquark into a triply heavy baryon: quark-diquark model of baryons. The results of this model are in acceptable agreement with those obtained through a full perturbative regime. Relying on the quark-diquark model and considering two different scenarios we determine the spin-dependent fragmentation functions of polarized heavy baryons in such a way that a vector or a pseudoscalar heavy diquark is an intermediate particle between the initial heavy quark and the final state baryon.

References

  1. 1.
    A.P. Martynenko, V.A. Saleev, Phys. Rev. D 53, 6666 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    M. Kramer, Prog. Part. Nucl. Phys. 47, 141 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    S.M.M. Nejad, A. Armat, Eur. Phys. J. Plus 128, 121 (2013)CrossRefGoogle Scholar
  5. 5.
    S.M. Moosavi Nejad, PoS EPS-HEP2015, 446 (2015)Google Scholar
  6. 6.
    S.M. Moosavi Nejad, M. Soleymaninia, A. Maktoubian, Eur. Phys. J. A 52, 316 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Moosavi Nejad, P. Sartipi Yarahmadi, Eur. Phys. J. A 52, 315 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Belle Collaboration (R. Seuster et al.), Phys. Rev. D 73, 032002 (2006)CrossRefGoogle Scholar
  9. 9.
    CLEO Collaboration (M. Artuso et al.), Phys. Rev. D 70, 112001 (2004)CrossRefGoogle Scholar
  10. 10.
    M.G. Bowler, Z. Phys. C 11, 169 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Nucl. Phys. B 799, 34 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J. dos Anjos, G. Herrera, J. Magnin, F.R.A. Simao, Phys. Rev. D 56, 394 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    A.D. Adamov, G.R. Goldstein, Phys. Rev. D 56, 7381 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    E704 Collaboration (A. Bravar et al.), Phys. Rev. Lett. 78, 4003 (1997)CrossRefGoogle Scholar
  15. 15.
    M.A. Doncheski, J. Steegborn, M.L. Stong, Phys. Rev. D 53, 1247 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko, Phys. Rev. D 60, 014007 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    A.F. Falk, M.E. Luke, M.J. Savage, M.B. Wise, Phys. Rev. D 49, 555 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    S.P. Baranov, V.L. Slad, Phys. At. Nucl. 67, 808 (2004) Yad. Fiz. 67CrossRefGoogle Scholar
  19. 19.
    J.P. Ma, Nucl. Phys. B 506, 329 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    C.H. Chang, Y.Q. Chen, Phys. Lett. B 284, 127 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    E. Braaten, K.m. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    M.A. Gomshi Nobary, R. Sepahvand, Phys. Rev. D 76, 114006 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) Yad. Fiz. 15Google Scholar
  24. 24.
    M. Suzuki, Phys. Rev. D 33, 676 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Brodsky, C.R. Ji, Phys. Rev. Lett. 55, 2257 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    F. Amiri, B.C. Harms, C.-R. Ji, Phys. Rev. D 32, 2982 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Gomshi Nobary, J. Phys. G 20, 65 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    S.M. Moosavi Nejad, Eur. Phys. J. A 52, 127 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    F. Amiri, C.R. Ji, Phys. Lett. B 195, 593 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M.A. Gomshi Nobary, R. Sepahvand, Phys. Rev. D 71, 034024 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    M. Gell-Mann, Phys. Lett. 8, 214 (1964)ADSCrossRefGoogle Scholar
  34. 34.
    J.C. Collins, Phys. Rev. D 58, 094002 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    M. Anselmino, E. Predazzi, Rev. Mod. Phys. 65, 1199 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D 27, 105 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    M.A. Gomshi Nobary, B. Nikoobakht, J. Naji, Nucl. Phys. A 789, 243 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    K. Kolodziej, A. Leike, R. Ruckl, Phys. Lett. B 348, 219 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    J.H. Kuhn, J. Kaplan, E.G.O. Safiani, Nucl. Phys. B 157, 125 (1979)ADSCrossRefGoogle Scholar
  40. 40.
    B. Guberina, J.H. Kuhn, R.D. Peccei, R. Ruckl, Nucl. Phys. B 174, 317 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    S.M.M. Nejad, M. Delpasand, Int. J. Mod. Phys. A 30, 1550179 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    S.M. Moosavi Nejad, Eur. Phys. J. Plus 130, 136 (2015)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Faculty of PhysicsYazd UniversityYazdIran
  2. 2.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations