Skip to main content
Log in

Prompt-delayed \(\gamma\)-ray spectroscopy with AGATA, EXOGAM and VAMOS++

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A new experimental setup to measure prompt-delayed \(\gamma\)-ray coincidences from isotopically identified fission fragments, over a wide time range of 100ns-200μ s, is presented. The fission fragments were isotopically identified, on an event-by-event basis, using the VAMOS++ large acceptance spectrometer. The prompt \(\gamma\) rays emitted at the target position and corresponding delayed \( \gamma\) rays emitted at the focal plane of the spectrometer were detected using, respectively, thirty two crystals of the AGATA \(\gamma\)-ray tracking array and seven EXOGAM HPGe Clover detectors. Fission fragments produced in fusion and transfer-induced fission reactions, using a 238U beam at an energy of 6.2 MeV/u impinging on a 9Be target, were used to characterize and qualify the performance of the detection system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Otsuka, Phys. Scr. T 152, 014007 (2013)

    Article  ADS  Google Scholar 

  2. A. Navin et al., Phys. Lett. B 728, 136 (2014)

    Article  ADS  Google Scholar 

  3. G.D. Dracoulis, Phys. Scr. T 152, 014015 (2013)

    Article  ADS  Google Scholar 

  4. J.A. Pinston, J. Genevey, J. Phys. G: Nucl. Part. Phys. 30, R57 (2004)

    Article  ADS  Google Scholar 

  5. S. Kailas, Phys. Rep. 284, 381 (1997)

    Article  ADS  Google Scholar 

  6. A. Navin, M. Rejmund, in McGraw-Hill Yearbook of Science and Technology 2014 (McGraw-Hill, 2014) p. 137

  7. V. Volkov, Phys. Rep. 44, 93 (1978)

    Article  ADS  Google Scholar 

  8. L. Corradi, G. Pollarolo, S. Szilner, J. Phys. G: Nucl. Part. Phys. 36, 113101 (2009)

    Article  ADS  Google Scholar 

  9. S. Pullanhiotan et al., Nucl. Instrum. Methods A 593, 343 (2008)

    Article  ADS  Google Scholar 

  10. M. Rejmund et al., Nucl. Instrum. Methods A 646, 184 (2011)

    Article  ADS  Google Scholar 

  11. A. Stefanini et al., Nucl. Phys. A 701, 217 (2002)

    Article  Google Scholar 

  12. J. Simpson et al., Acta Phys. Hung. New Ser. Heavy Ion Phys. 11, 159 (2000)

    Google Scholar 

  13. A. Gadea et al., Nucl. Instrum. Methods A 654, 88 (2011)

    Article  ADS  Google Scholar 

  14. S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)

    Article  ADS  Google Scholar 

  15. A. Gadea et al., Eur. Phys. J. A 20, 193 (2003)

    Article  ADS  Google Scholar 

  16. Y.X. Watanabe et al., Phys. Rev. Lett. 115, 172503 (2015)

    Article  ADS  Google Scholar 

  17. M. Rejmund et al., Phys. Rev. C 93, 024312 (2016)

    Article  ADS  Google Scholar 

  18. M. Rejmund et al., Phys. Lett. B 753, 86 (2016)

    Article  ADS  Google Scholar 

  19. J.A. Pinston et al., Phys. Rev. C 61, 024312 (2000)

    Article  ADS  Google Scholar 

  20. P. Regan et al., Nucl. Phys. A 787, 491 (2007)

    Article  ADS  Google Scholar 

  21. P.-A. Söderström et al., Nucl. Instrum. Methods B 317, 649 (2013) (Part B)

    Article  ADS  Google Scholar 

  22. K. Hauschild et al., Phys. Rev. Lett. 87, 072501 (2001)

    Article  ADS  Google Scholar 

  23. S. Biswas et al., Phys. Rev. C 93, 034324 (2016)

    Article  ADS  Google Scholar 

  24. G. Bocchi et al., Phys. Lett. B 760, 273 (2016)

    Article  ADS  Google Scholar 

  25. B. Fornal et al., Phys. Rev. C 63, 024322 (2001)

    Article  ADS  Google Scholar 

  26. L.W. Iskra et al., Phys. Rev. C 89, 044324 (2014)

    Article  ADS  Google Scholar 

  27. P. Bhattacharyya et al., Phys. Rev. C 56, R2363 (1997)

    Article  ADS  Google Scholar 

  28. M. Houry et al., Eur. Phys. J. A 6, 43 (1999)

    Article  ADS  Google Scholar 

  29. A. Hürstel et al., Eur. Phys. J. A 15, 329 (2002)

    Article  ADS  Google Scholar 

  30. K. Wimmer et al., Nucl. Instrum. Methods A 769, 65 (2015)

    Article  ADS  Google Scholar 

  31. A. Dijon et al., Phys. Rev. C 85, 031301 (2012)

    Article  ADS  Google Scholar 

  32. M. Vandebrouck et al., Nucl. Instrum. Methods A 812, 112 (2016)

    Article  ADS  Google Scholar 

  33. E. Clément et al., Nucl. Instrum. Methods A 855, 1 (2017)

    Article  ADS  Google Scholar 

  34. J. Genevey et al., Phys. Rev. C 63, 054315 (2001)

    Article  ADS  Google Scholar 

  35. K. Sistemich et al., Z. Phys. A 292, 145 (1979)

    Article  ADS  Google Scholar 

  36. R. Venturelli, D. Bazzacco, LNL Annu. Rep. 2004, 220 (2005)

    Google Scholar 

  37. A. Lopez-Martens et al., Nucl. Instrum. Methods A 533, 454 (2004)

    Article  ADS  Google Scholar 

  38. A. Navin et al., Phys. Lett. B 728, 136 (2014)

    Article  ADS  Google Scholar 

  39. J. Genevey et al., Phys. Rev. C 59, 82 (1999)

    Article  ADS  Google Scholar 

  40. L. Iskra, in 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei (FISSION 2017) (Chamrousse, France, 2017)

  41. L. Iskra, in preparation

  42. ENSDF, http://www.nndc.bnl.gov/ensdf/ (2017)

  43. T. Kibédi et al., Nucl. Instrum. Methods A 589, 202 (2008)

    Article  ADS  Google Scholar 

  44. R. Broda et al., Phys. Rev. Lett. 68, 1671 (1992)

    Article  ADS  Google Scholar 

  45. B. Fogelberg, P. Carl, Nucl. Phys. A 323, 205 (1979)

    Article  ADS  Google Scholar 

  46. J.K. Hwang et al., Phys. Rev. C 69, 057301 (2004)

    Article  ADS  Google Scholar 

  47. M. Mineva et al., Eur. Phys. J. A 11, 9 (2001)

    Article  ADS  Google Scholar 

  48. J.P. Omtvedt et al., Phys. Rev. Lett. 75, 3090 (1995)

    Article  ADS  Google Scholar 

  49. W. Urban et al., Phys. Rev. C 79, 044304 (2009)

    Article  ADS  Google Scholar 

  50. B. Fernández-Domínguez et al., Phys. Rev. C 84, 011301 (2011)

    Article  ADS  Google Scholar 

  51. C. Schmitt et al., Nucl. Instrum. Methods A 621, 558 (2010)

    Article  ADS  Google Scholar 

  52. F.J. Egea, in 2014 19th IEEE-NPSS Real Time Conference (RT) (IEEE, 2014) pp. 1--3

  53. “Technical proposal for the SPIRAL2 instrumentation: EXOGAM2” (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Kim.

Additional information

Communicated by A. Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.H., Lemasson, A., Rejmund, M. et al. Prompt-delayed \(\gamma\)-ray spectroscopy with AGATA, EXOGAM and VAMOS++. Eur. Phys. J. A 53, 162 (2017). https://doi.org/10.1140/epja/i2017-12353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12353-y

Navigation