Prompt-delayed \(\gamma\)-ray spectroscopy with AGATA, EXOGAM and VAMOS++

  • Y. H. Kim
  • A. Lemasson
  • M. Rejmund
  • A. Navin
  • S. Biswas
  • C. Michelagnoli
  • I. Stefan
  • R. Banik
  • P. Bednarczyk
  • S. Bhattacharya
  • S. Bhattacharyya
  • E. Clément
  • H. L. Crawford
  • G. De France
  • P. Fallon
  • J. Goupil
  • B. Jacquot
  • H. J. Li
  • J. Ljungvall
  • A. O. Macchiavelli
  • A. Maj
  • L. Ménager
  • V. Morel
  • R. Palit
  • R. M. Pérez-Vidal
  • J. Ropert
  • C. Schmitt
Special Article - Tools for Experiment and Theory
  • 40 Downloads

Abstract.

A new experimental setup to measure prompt-delayed \(\gamma\)-ray coincidences from isotopically identified fission fragments, over a wide time range of 100ns-200μ s, is presented. The fission fragments were isotopically identified, on an event-by-event basis, using the VAMOS++ large acceptance spectrometer. The prompt \(\gamma\) rays emitted at the target position and corresponding delayed \( \gamma\) rays emitted at the focal plane of the spectrometer were detected using, respectively, thirty two crystals of the AGATA \(\gamma\)-ray tracking array and seven EXOGAM HPGe Clover detectors. Fission fragments produced in fusion and transfer-induced fission reactions, using a 238U beam at an energy of 6.2 MeV/u impinging on a 9Be target, were used to characterize and qualify the performance of the detection system.

References

  1. 1.
    T. Otsuka, Phys. Scr. T 152, 014007 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    A. Navin et al., Phys. Lett. B 728, 136 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    G.D. Dracoulis, Phys. Scr. T 152, 014015 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Pinston, J. Genevey, J. Phys. G: Nucl. Part. Phys. 30, R57 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    S. Kailas, Phys. Rep. 284, 381 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    A. Navin, M. Rejmund, in McGraw-Hill Yearbook of Science and Technology 2014 (McGraw-Hill, 2014) p. 137Google Scholar
  7. 7.
    V. Volkov, Phys. Rep. 44, 93 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    L. Corradi, G. Pollarolo, S. Szilner, J. Phys. G: Nucl. Part. Phys. 36, 113101 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S. Pullanhiotan et al., Nucl. Instrum. Methods A 593, 343 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M. Rejmund et al., Nucl. Instrum. Methods A 646, 184 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A. Stefanini et al., Nucl. Phys. A 701, 217 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Simpson et al., Acta Phys. Hung. New Ser. Heavy Ion Phys. 11, 159 (2000)Google Scholar
  13. 13.
    A. Gadea et al., Nucl. Instrum. Methods A 654, 88 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Gadea et al., Eur. Phys. J. A 20, 193 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Y.X. Watanabe et al., Phys. Rev. Lett. 115, 172503 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    M. Rejmund et al., Phys. Rev. C 93, 024312 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    M. Rejmund et al., Phys. Lett. B 753, 86 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Pinston et al., Phys. Rev. C 61, 024312 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    P. Regan et al., Nucl. Phys. A 787, 491 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    P.-A. Söderström et al., Nucl. Instrum. Methods B 317, 649 (2013) (Part B)ADSCrossRefGoogle Scholar
  22. 22.
    K. Hauschild et al., Phys. Rev. Lett. 87, 072501 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    S. Biswas et al., Phys. Rev. C 93, 034324 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    G. Bocchi et al., Phys. Lett. B 760, 273 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    B. Fornal et al., Phys. Rev. C 63, 024322 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    L.W. Iskra et al., Phys. Rev. C 89, 044324 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    P. Bhattacharyya et al., Phys. Rev. C 56, R2363 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    M. Houry et al., Eur. Phys. J. A 6, 43 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    A. Hürstel et al., Eur. Phys. J. A 15, 329 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    K. Wimmer et al., Nucl. Instrum. Methods A 769, 65 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    A. Dijon et al., Phys. Rev. C 85, 031301 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M. Vandebrouck et al., Nucl. Instrum. Methods A 812, 112 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    E. Clément et al., Nucl. Instrum. Methods A 855, 1 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    J. Genevey et al., Phys. Rev. C 63, 054315 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    K. Sistemich et al., Z. Phys. A 292, 145 (1979)ADSCrossRefGoogle Scholar
  36. 36.
    R. Venturelli, D. Bazzacco, LNL Annu. Rep. 2004, 220 (2005)Google Scholar
  37. 37.
    A. Lopez-Martens et al., Nucl. Instrum. Methods A 533, 454 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    A. Navin et al., Phys. Lett. B 728, 136 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    J. Genevey et al., Phys. Rev. C 59, 82 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    L. Iskra, in 6th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei (FISSION 2017) (Chamrousse, France, 2017)Google Scholar
  41. 41.
    L. Iskra, in preparationGoogle Scholar
  42. 42.
  43. 43.
    T. Kibédi et al., Nucl. Instrum. Methods A 589, 202 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    R. Broda et al., Phys. Rev. Lett. 68, 1671 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    B. Fogelberg, P. Carl, Nucl. Phys. A 323, 205 (1979)ADSCrossRefGoogle Scholar
  46. 46.
    J.K. Hwang et al., Phys. Rev. C 69, 057301 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    M. Mineva et al., Eur. Phys. J. A 11, 9 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    J.P. Omtvedt et al., Phys. Rev. Lett. 75, 3090 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    W. Urban et al., Phys. Rev. C 79, 044304 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    B. Fernández-Domínguez et al., Phys. Rev. C 84, 011301 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    C. Schmitt et al., Nucl. Instrum. Methods A 621, 558 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    F.J. Egea, in 2014 19th IEEE-NPSS Real Time Conference (RT) (IEEE, 2014) pp. 1--3Google Scholar
  53. 53.
    “Technical proposal for the SPIRAL2 instrumentation: EXOGAM2” (2009)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Y. H. Kim
    • 1
  • A. Lemasson
    • 1
  • M. Rejmund
    • 1
  • A. Navin
    • 1
  • S. Biswas
    • 2
  • C. Michelagnoli
    • 1
  • I. Stefan
    • 3
  • R. Banik
    • 4
  • P. Bednarczyk
    • 5
  • S. Bhattacharya
    • 4
  • S. Bhattacharyya
    • 4
  • E. Clément
    • 1
  • H. L. Crawford
    • 6
  • G. De France
    • 1
  • P. Fallon
    • 6
  • J. Goupil
    • 1
  • B. Jacquot
    • 1
  • H. J. Li
    • 1
  • J. Ljungvall
    • 7
  • A. O. Macchiavelli
    • 6
  • A. Maj
    • 5
  • L. Ménager
    • 1
  • V. Morel
    • 1
  • R. Palit
    • 2
  • R. M. Pérez-Vidal
    • 8
  • J. Ropert
    • 1
  • C. Schmitt
    • 1
  1. 1.GANIL, CEA/DRF-CNRS/IN2P3Caen Cedex 5France
  2. 2.Department of Nuclear and Atomic PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  3. 3.Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-SaclayOrsay CedexFrance
  4. 4.Variable Energy Cyclotron CentreKolkataIndia
  5. 5.Institute of Nuclear Physics PANKrakówPoland
  6. 6.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.CSNSM, Université Paris-Saclay, CNRS/IN2P3OrsayFrance
  8. 8.IFIC, Universitat de València, CSICValènciaSpain

Personalised recommendations