Comprehensive overview of the Point-by-Point model of prompt emission in fission

Regular Article - Theoretical Physics
  • 33 Downloads

Abstract.

The investigation of prompt emission in fission is very important in understanding the fission process and to improve the quality of evaluated nuclear data required for new applications. In the last decade remarkable efforts were done for both the development of prompt emission models and the experimental investigation of the properties of fission fragments and the prompt neutrons and \(\gamma\)-ray emission. The accurate experimental data concerning the prompt neutron multiplicity as a function of fragment mass and total kinetic energy for 252Cf(SF) and 235 (n, f) recently measured at JRC-Geel (as well as other various prompt emission data) allow a consistent and very detailed validation of the Point-by-Point (PbP) deterministic model of prompt emission. The PbP model results describe very well a large variety of experimental data starting from the multi-parametric matrices of prompt neutron multiplicity \(\nu (A,TKE)\) and \(\gamma\)-ray energy \(E_{\gamma}(A,TKE)\) which validate the model itself, passing through different average prompt emission quantities as a function of A (e.g., \(\nu(A)\), \(E_{\gamma}(A)\), \(\langle \varepsilon \rangle (A)\) etc.), as a function of TKE (e.g., \(\nu (TKE)\), \(E_{\gamma}(TKE)\)) up to the prompt neutron distribution \(P (\nu)\) and the total average prompt neutron spectrum. The PbP model does not use free or adjustable parameters. To calculate the multi-parametric matrices it needs only data included in the reference input parameter library RIPL of IAEA. To provide average prompt emission quantities as a function of A, of TKE and total average quantities the multi-parametric matrices are averaged over reliable experimental fragment distributions. The PbP results are also in agreement with the results of the Monte Carlo prompt emission codes FIFRELIN, CGMF and FREYA. The good description of a large variety of experimental data proves the capability of the PbP model to be used in nuclear data evaluations and its reliability to predict prompt emission data for fissioning nuclei and incident energies for which the experimental information is completely missing. The PbP treatment can also provide input parameters of the improved Los Alamos model with non-equal residual temperature distributions recently reported by Madland and Kahler, especially for fissioning nuclei without any experimental information concerning the prompt emission.

References

  1. 1.
    R. Capote, Y.J. Chen, F.-J. Hambsch, N.V. Kornilov, J.P. Lestone, O. Litaize, B. Morillon, D. Neudecker, S. Oberstedt, T. Ohsawa, N. Otuka, V.G. Pronyaev, A. Saxena, O. Serot, O.A. Shcherbakov, N.C. Shu, D.L. Smith, P. Talou, A. Trkov, A.C. Tudora, R. Vogt, S. Vorobyev, Nucl. Data Sheets 131, 1 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    A. Göök, F.-J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    A. Göök, F.-J. Hambsch, S. Oberstedt, Prompt fission neutron emission in the reaction ${}^{235}U(n,f)$, in THEORY-4 Scientific Workshop on Nuclear Fission Dynamics and the Emission of Prompt Neutrons and Gamma Rays, 20--22 June 2017, Varna, Bulgaria, to be published in EPJ Web of ConferencesGoogle Scholar
  4. 4.
    A. Al-Adili, F.-J. Hambsch, S. Pomp, S. Oberstedt, Phys. Rev. C 86, 054601 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    D.G. Madland, J.R. Nix, Nucl. Sci. Eng. 81, 213 (1982)CrossRefGoogle Scholar
  6. 6.
    D.G. Madland, A.C. Kahler, Nucl. Phys. A 957, 289 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    A. Tudora, Ann. Nucl. Energy 36, 72 (2009)CrossRefGoogle Scholar
  8. 8.
    A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    A. Tudora, F.-J. Hambsch, S. Oberstedt, G. Giubega, I. Visan, Nucl. Sci. Eng. 181, 289 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Tudora, F.-J. Hambsch, G. Giubega, I. Visan, Nucl. Phys. A 929, 260 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    A. Tudora, F.-J. Hambsch, G. Giubega, I. Visan, Nucl. Phys. A 933, 165 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A. Tudora, F.-J. Hambsch, G. Giubega, Eur. Phys. J. A 52, 182 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org ADSCrossRefGoogle Scholar
  14. 14.
    C. Morariu, A. Tudora, F.-J. Hambsch, S. Oberstedt, C. Manailescu, J. Phys. G: Nucl. Part. Phys. 39, 055103 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Tudora, F.-J. Hambsch, I. Visan, G. Giubega, Nucl. Phys. A 940, 242 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    C. Manailescu, A. Tudora, F.-J. Hambsch, C. Morariu, S. Oberstedt, Nucl. Phys. A 867, 12 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    O. Bersillon, SCAT2 optical model code, NEA-Data Bank, Computer Program Service, Package NEA 0829/07 version 2010 (V. Manea, University of Bucharest) http://www.oecd-nea.fr/databank/
  18. 18.
    R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org ADSCrossRefGoogle Scholar
  19. 19.
    F.-J. Hambsch, A. Tudora, G. Vladuca, S. Oberstedt, Ann. Nucl. Energy 32, 1032 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Tudora, F.-J. Hambsch, Parameterization of the residual temperature distribution based on the modeling of successive emission of prompt neutrons, in THEORY-4 Scientific Workshop on Nuclear Fission Dynamics and the Emission of Prompt Neutrons and Gamma Rays, 20--22 June 2017, Varna, Bulgaria, to be published in EPJ Web of ConferencesGoogle Scholar
  21. 21.
    J. Terrel, Phys. Rev. 113, 527 (1959)ADSCrossRefGoogle Scholar
  22. 22.
    D.G. Madland, Nucl. Phys. A 772, 113 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    H. Nifenecker, C. Signarbieux, R. Babinet, J. Poitou, Neutron and gamma emission in fission, IAEA-SM-174/207 117 review paper (1973)Google Scholar
  24. 24.
    A. Tudora, Ann. Nucl. Energy 35, 1 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Tudora, F.-J. Hambsch, Ann. Nucl. Energy 37, 771 (2010)CrossRefGoogle Scholar
  26. 26.
    A.V. Ignatiuk, in IAEA-RIPL1-TECDOC-1034, Segment V (1998) Chapt. 5.1.4Google Scholar
  27. 27.
    R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110, 3107 (2009) IAEA-RIPL3 electronic library, available online at https://www-nds.iaea.org ADSCrossRefGoogle Scholar
  28. 28.
    M. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A. Tudora, F.-J. Hambsch, S. Oberstedt, G. Giubega, I. Visan, Phys. Proc. 59, 95 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    C. Budtz-Jorgensen, H.H. Knitter, Nucl. Phys. A 490, 307 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    Ch. Straede, C. Budtz-Jorgensen, H.H. Knitter, Nucl. Phys. A 462, 85 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    O. Litaize, O. Serot, L. Berge, Eur. Phys. J. A 51, 177 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Phys. Rev. C 6, 1023 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    EXFOR Experimental Nuclear Data Library (available online at https://www-nds.iaea.org) nucleus ${}^{252}Cf$, reaction $(0,f)$, quantity MFQ, entry 41425 (Vorobyev)
  35. 35.
    O. Litaize, O. Serot, Phys. Rev. C 82, 054616 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    H. Nifenecker, C. Signarbieux, M. Ribrag, J. Poitou, J. Matuszek, Nucl. Phys. A 189, 285 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    H.R. Bowman, J.C.D. Milton, S.G. Thompson, W.J. Swiateki, Phys. Rev. 129, 2133 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    EXFOR Experimental Nuclear Data Library (available online at https://www-nds.iaea.org), nucleus ${}^{252}Cf$, reaction $(0,f)$, quantity MFQ $(P(\nu))$, entry 307720151-3 (J.W. Boldeman), entry 12833005 (R. Gwin), entry 41425002 (A.S. Vorobyev), entry 21495003 (E. Baron)
  39. 39.
    F.-J. Hambsch, S. Oberstedt, Nucl. Phys. A 617, 347 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    A.S. Vorobyev, O.A. Shcherbakov, Yad. Konst. 1-2, 37 (2011-2012)Google Scholar
  41. 41.
    W.P. Poenitz, T. Tamura, Proceedings of the International Conference on Nuclear Data for Science and Technology, Antwerpen, Belgium 1982, edited by K.H. Bhockhoff (D. Reidel Publ. Company, Dordrecht, 1983) p. 465Google Scholar
  42. 42.
    E. Blain, PhD Thesis, Rensselaer Institute, Troy, NY, December 2014Google Scholar
  43. 43.
    A. Tudora, F.-J. Hambsch, V. Tobosaru, Phys. Rev. C 94, 044601 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    A. Tudora, F.-J. Hambsch, V. Tobosaru, PbP model calculation of the prompt neutron distribution $\nu(A)$ at incident neutron energies where multiple fission chances are involved, in ND-2016, International Conference on Nuclear Data for Science and Technology, Brugge, Belgium, 11-16 September 2016, to be published in EPJ Web of ConferencesGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of Bucharest, Faculty of PhysicsBucharest MagureleRomania
  2. 2.European Commission, Joint Research Centre, Directorate G - Nuclear Safety and Security, Unit G2GeelBelgium

Personalised recommendations