Modeling alignment enhancement for solid polarized targets

Regular Article - Theoretical Physics

Abstract.

A model of dynamic orientation using optimized radiofrequency (RF) irradiation produced perpendicular to the holding field is developed for the spin-1 system required for tensor-polarized fixed-target experiments. The derivation applies to RF produced close to the Larmor frequency of the nucleus and requires the electron spin-resonance linewidth to be much smaller than the nuclear magnetic resonance frequency. The rate equations are solved numerically to study a semi-saturated steady-state resulting from the two sources of irradiation: microwave from the DNP process and the additional RF used to manipulate the tensor polarization. The steady-state condition and continuous-wave NMR lineshape are found that optimize the spin-1 alignment in the polycrystalline materials used as solid polarized targets in charged-beam nuclear and particle physics experiments.

References

  1. 1.
    P. Hoodbhoy et al., Nucl. Phys. B 312, 571 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Chen, The deuteron tensor structure function $b_1$, Jlab PR12-13-011 (2013). Google Scholar
  3. 3.
    D. Day, Measurement of quasi-elastic and elastic deuteron tensor asymmetries, Jlab PR12-15-005 (2015)Google Scholar
  4. 4.
    H. Chen, Measurement of the tensor analysing power in deuteron photodisintegration, HIGS P-12-16 (2016)Google Scholar
  5. 5.
    G.R. Smith et al., Phys. Rev. Lett. 57, 803 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    G.R. Smith et al., Phys. Rev. C 38, 251 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    C.R. Ottermann et al., Phys. Rev. C 38, 5 (1988)CrossRefGoogle Scholar
  8. 8.
    G.R. Smith et al., Phys. Rev. C 35, 6 (1987)CrossRefGoogle Scholar
  9. 9.
    C.R. Ottermann et al., Phys. Rev. C 38, 2310 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    B. Boden et al., Z. Phys. C 49, 175 (1991)CrossRefGoogle Scholar
  11. 11.
    H. Dutz et al., Nucl. Instrum. Methods A 340, 272 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    C. Keith et al., Nucl. Instrum. Methods A 684, 27 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    D. Crabb, W. Meyer, Annu. Rev. Nucl. Part. Sci. 47, 67 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    W. Meyer, E. Schilling, in Proceedings of the 4th International Workshop on Polarized Target Materials and Techniques (Physikalisches Institut, Bonn, 1984)Google Scholar
  15. 15.
    P.P.J. Delheij, D.C. Healey, G.D. Wait, Nucl. Instrum. Methods A 251, 498 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    M. Borghini, Phys. Rev. Lett. 20, 419 (1968)ADSCrossRefGoogle Scholar
  17. 17.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, UK, 1961)Google Scholar
  18. 18.
    C. Dulya et al., Nucl. Instrum. Methods A 398, 109 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    G.E. Pake, J. Chem. Phys. 16, 327 (1948)ADSCrossRefGoogle Scholar
  20. 20.
    M. Goldman, J. Magn. Reson. 17, 393 (1975)ADSGoogle Scholar
  21. 21.
    D.G. Crabb, D.B. Day, Nucl. Instrum. Methods A 356, 9 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    A. Thomas et al., Nucl. Instrum. Methods A 356, 5 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    W. Meyer et al., Nucl. Instrum. Methods A 227, 35 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    St. Geortz et al., Prog. Part. Nucl. Phys. 49, 403 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    W. Meyer, Nucl. Instrum. Methods A 526, 12 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    O.S. Leifson et al., Phys. Rev. 122, 1781 (1961)ADSCrossRefGoogle Scholar
  27. 27.
    A. Abragam et al., C.R. Acad. Sci. 247, 2337 (1958)Google Scholar
  28. 28.
    P. McKee, Nucl. Instrum. Methods A 526, 60 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    N. Bloembergen, Physica 15, 386 (1949)ADSCrossRefGoogle Scholar
  30. 30.
    M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids (Oxford University Press, London, 1970)Google Scholar
  31. 31.
    M. Ernst, B.H. Meier, in Solid State NMR of Polymers, edited by I. Ando, T. Asakura (Elsevier, 1998)Google Scholar
  32. 32.
    C.D. Jeffries, Dynamic Nuclear Orientation (Interscience Publishers, New York, 1963)Google Scholar
  33. 33.
    P.A. Fedders, P.C. Souers, Phys. Rev. B 35, 3088 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    L. JiZhi, Commun. Theor. Phys. 31, 619 (1999)CrossRefGoogle Scholar
  35. 35.
    D.G. Crabb et al., Phys. Rev. Lett. 64, 2627 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    G.R. Court et al., Nucl. Instrum. Methods Phys. Res. A 324, 433 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    P.A. Fedders, Phys. Rev. B 10, 4510 (1974)ADSCrossRefGoogle Scholar
  38. 38.
    R. Holt, R. Gilman, Rep. Prog. Phys. 75, 086301 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    C. Zhang et al., Phys. Rev. Lett. 107, 252501 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    M. Ferro-Luzzi et al., Phys. Rev. Lett. 77, 13 (1996)CrossRefGoogle Scholar
  41. 41.
    M.E. Schulze et al., Phys. Rev. Lett. 52, 8 (1984)CrossRefGoogle Scholar
  42. 42.
    S. Hino, S. Kumano, Phys. Rev. D 59, 094026 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    S. Hino, S. Kumano, Phys. Rev. D 60, 054018 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    S. Kumano, M. Miyama, Phys. Lett. B 479, 149 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    A. Kirchner, D. Müller, Eur. Phys. J. C 32, 347 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    A. Airapetian et al., Nucl. Phys. B 842, 265 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    I.A. Ranchek et al., Phys. Rev. Lett. 98, 182303 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    S.I. Mishnev et al., Phys. Lett. B 302, 23 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    R. Bruss et al., Helv. Phys. Acta 59, 772 (1986)Google Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations