Excited collective states of nuclei within Bohr Hamiltonian with Tietz-Hua potential

  • M. Chabab
  • A. El Batoul
  • M. Hamzavi
  • A. Lahbas
  • M. Oulne
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract.

In this paper, we present new analytical solutions of the Bohr Hamiltonian problem that we derived with the Tietz-Hua potential, here used for describing the \( \beta\) -part of the nuclear collective potential plus that of the harmonic oscillator for the \( \gamma\) -part. Also, we proceed to a systematic comparison of the numerical results obtained with this kind of \( \beta\) -potential with others which are widely used in such a framework as well as with the experiment. The calculations are carried out for energy spectra and electromagnetic transition probabilities for \( \gamma\) -unstable and axially symmetric deformed nuclei. In the same frame, we show the effect of the shape flatness of the \( \beta\) -potential beyond its minimum on transition rates calculations.

References

  1. 1.
    A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk 26, 1 (1952)Google Scholar
  2. 2.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (Benjamin, New York, 1975)Google Scholar
  3. 3.
    F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, 1987)Google Scholar
  4. 4.
    F. Iachello, Phys. Rev. Lett. 85, 3580 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    F. Iachello, Phys. Rev. Lett. 87, 052502 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    D. Bonatsos, D. Lenis, D. Petrellis, P. Terziev, I. Yigitoglu, Phys. Lett. B 632, 238 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    M. Chabab, A. El Batoul, A. Lahbas, M. Oulne, Phys. Lett. B 758, 212 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    I. Inci, D. Bonatsos, I. Boztosun, Phys. Rev. C 84, 024309 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    I. Boztosun, D. Bonatsos, I. Inci, Phys. Rev. C 77, 044302 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    I. Inci, Int. J. Mod. Phys. E 23, 1450053 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    L. Fortunato, Eur. Phys. J. A 26, 1 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    D. Bonatsos, P.E. Georgoudis, N. Minkov, D. Petrellis, C. Quesne, Phys. Rev. C 88, 034316 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Phys. Rev. C 83, 044321 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D. Bonatsos, E.A. McCutchan, N. Minkov, R.F. Casten, P. Yotov, D. Lenis, D. Petrellis, I. Yigitoglu, Phys. Rev. C 76, 064312 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    P. Buganu, A. Raduta, Rom. J. Phys. 60, 161 (2015)Google Scholar
  16. 16.
    M. Chabab, A. Lahbas, M. Oulne, Phys. Rev. C 91, 064307 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    G. Lévai, Phys. Rev. C 69, 014304 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    G. Lévai, Phys. Rev. C 81, 044304 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    P. Buganu, R. Budaca, J. Phys. G: Nucl. Phys. 42, 105106 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    P. Buganu, A. Raduta, A. Faessler, J. Phys. G: Nucl. Phys. 39, 025103 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Raduta, P. Buganu, Phys. Rev. C 83, 034313 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    A.A. Raduta, P. Buganu, J. Phys. G: Nucl. Phys. 40, 025108 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    A.A. Raduta, P. Buganu, Phys. Rev. C 88, 064328 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    M. Chabab, A. Lahbas, M. Oulne, Eur. Phys. J. A 51, 131 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    M. Çapak, J. Phys. G: Nucl. Phys. 42, 095102 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    M. Chabab, A. Lahbas, M. Oulne, Int. J. Mod. Phys. E 24, 1550089 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M. Chabab, A. El Batoul, A. Lahbas, M. Oulne, Nucl. Phys. A 953, 158 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    T. Tietz, J. Chem. Phys. 38, 3036 (1963)ADSCrossRefGoogle Scholar
  29. 29.
    W. Hua, Phys. Rev. A 42, 2524 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    M. Hamzavi, A. Rajabi, H. Hassanabadi, Mol. Phys. 110, 389 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988)Google Scholar
  32. 32.
    L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956)ADSCrossRefGoogle Scholar
  33. 33.
    D.R. Bés, Nucl. Phys. 10, 373 (1959)CrossRefGoogle Scholar
  34. 34.
    G. Rakavy, Nucl. Phys. 4, 289 (1957)CrossRefGoogle Scholar
  35. 35.
    P. Buganu, R. Budaca, Phys. Rev. C 91, 014306 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    D. Bonatsos, D. Lenis, E. McCutchan, D. Petrellis, I. Yigitoglu, Phys. Lett. B 649, 394 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    C. Pekeris, Phys. Rev. 45, 98 (1934)ADSCrossRefGoogle Scholar
  38. 38.
    D. Bonatsos, P. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Phys. Lett. B 683, 264 (2010)ADSCrossRefGoogle Scholar
  39. 39.
  40. 40.
    Y. Alhassid, N. Whelan, Phys. Rev. Lett. 67, 816 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    J. Jolie, R. Casten, P. Cejnar, S. Heinze, E. McCutchan, N. Zamfir, Phys. Rev. Lett. 93, 132501 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    R. Casten, Nuclear Structure From a Simple Perspective (Oxford University Press, 2000)Google Scholar
  43. 43.
    R.F. Casten, Nat. Phys. 2, 811 (2006)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. Chabab
    • 1
  • A. El Batoul
    • 1
  • M. Hamzavi
    • 2
  • A. Lahbas
    • 1
  • M. Oulne
    • 1
  1. 1.High Energy Physics and Astrophysics Laboratory, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakeshMorocco
  2. 2.Department of PhysicsUniversity of ZanjanZanjanIran

Personalised recommendations