Advertisement

Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction

  • K. MadhuriEmail author
  • D. N. Basu
  • T. R. Routray
  • S. P. Pattnaik
Regular Article - Theoretical Physics
  • 55 Downloads

Abstract.

The mass, radius and crustal fraction of moment of inertia in neutron stars are calculated using \(\beta\)-equilibrated nuclear matter obtained from the Skyrme effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions using the KDE0v1 set. The neutron star masses obtained by solving the Tolman-Oppenheimer-Volkoff equations using neutron star matter obtained from this set are able to describe highly massive compact stars \(\sim 2M_{\odot}\). The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar, \(R\geq 3.69 + 3.44M/M_{\odot}\). Present calculations suggest that the crustal fraction of the total moment of inertia can be \(\sim 6.3\)% due to crustal entrainment caused by the Bragg reflection of unbound neutrons by lattice ions.

References

  1. 1.
    J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    S.L. Sapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Wiley-Interscience, New York, 1983)Google Scholar
  4. 4.
    J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, Science 311, 1901 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    A.G. Lyne, F. Graham-Smith, Pulsar Astronomy, 2nd edition, in Cambridge Astrophysics Series, Vol. 31 (Cambridge University Press, Cambridge, UK, 1998) Chapt. 12, Sect. 4Google Scholar
  6. 6.
    A.G. Lyne, Pulsars: Problems and Progress (IAU Colloq. 160), edited by S. Johnston, M.A. Walker, M. Bailes (ASP, San Francisco, CA, USA, 1996) p. 73Google Scholar
  7. 7.
    V.M. Kaspi, J.R. Lackey, D. Chakrabarty, Astrophys. J. 537, L31 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    D. Atta, S. Mukhopadhyay, D.N. Basu, Indian J. Phys. 91, 235 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    V.L. Ginzburg, D.A. Kirzhnits, Sov. JETP 20, 1346 (1965)Google Scholar
  10. 10.
    D. Pines, M.A. Alpar, Nature 316, 27 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    P.W. Anderson, N. Itoh, Nature 256, 25 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    Chamel Nicolas, PoS MPCS2015, 013 (2016)Google Scholar
  13. 13.
    R.I. Epstein, G. Baym, Astrophys. J. 387, 276 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Alpar, H.F. Chau, K.S. Cheng, D. Pines, Astrophys. J. 409, 345 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    B. Link, R.I. Epstein, Astrophys. J. 457, 844 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    M. Ruderman, T. Zhu, K. Chen, Astrophys. J. 492, 267 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    A. Sedrakian, J.M. Cordes, Mon. Not. R. Astron. Soc. 307, 365 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    J. Piekarewicz, F.J. Fattoyev, C.J. Horowitz, Phys. Rev. C 90, 015803 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    W.G. Newton et al., Mon. Not. R. Astron. Soc. 454, 4400 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Noël Martin, Michael Urban, Phys. Rev. C 92, 015803 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    C.J. Pethick, D.G. Ravenhall, Annu. Rev. Nucl. Part. Sci. 45, 429 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    F. Douchin, P. Haensel, Phys. Lett. B 485, 107 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    J. Carriere, C.J. Horowitz, J. Piekarewicz, Astrophys. J. 593, 463 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    B.K. Agrawal, S. Shlomo, V. Kim Au, Phys. Rev. C 72, 014310 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    D. Atta, D.N. Basu, Phys. Rev. C 90, 035802 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    S. Kubis, Phys. Rev. C 70, 065804 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    S. Kubis, Phys. Rev. C 76, 025801 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    A. Worley, P.G. Krastev, B.A. Li, Astrophys. J. 685, 390 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition (John Wiley & Sons, New York, 1985)Google Scholar
  31. 31.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  32. 32.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSCrossRefGoogle Scholar
  33. 33.
    B. Link, R.I. Epstein, J.M. Lattimer, Phys. Rev. Lett. 83, 3362 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    B.-J. Cai, L.W. Chen, Phys. Rev. C 85, 024302 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Ch.C. Moustakidis, T. Niksic, G.A. Lalazisis, D. Vretenar, P. Ring, Phys. Rev. C 81, 065803 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    T.R. Routray, X. Viñas, D.N. Basu, S.P. Pattnaik, M. Centelles, L. Robledo, B. Behera, J. Phys. G: Nucl. Part. Phys. 43, 105101 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    J. Hooker, W.G. Newton, Bao-An Li, Mon. Not. R. Astron. Soc. 449, 3559 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    T. Delsate, N. Chamel, N. Gürlebeck, A.F. Fantina, J.M. Pearson, C. Ducoin, Phys. Rev. D 94, 023008 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    A. Li, J.M. Dong, J.B. Wang, R.X. Xu, Astrophys. J. Suppl. Ser. 223, 16 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    J. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    J. Xu, L.W. Chen, B.-A. Li, H.-R. Ma, Astrophys. J. 697, 1549 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    N. Andersson, K. Glampedakis, W.C.G. Ho, C.M. Espinoza, Phys. Rev. Lett. 109, 241103 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    N. Chamel, Phys. Rev. Lett. 110, 011101 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    W.D. Arnett, R.L. Bowers, Astrophys. J. Suppl. 33, 415 (1977)ADSCrossRefGoogle Scholar
  45. 45.
    M. Dutra, O. Lourenco, J.S.S. Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    P.D. Stevenson, P.M. Goddard, J.R. Stone, M. Dutra, AIP Conf. Proc. 1529, 262 (2013) arXiv:1210.1592 ADSCrossRefGoogle Scholar
  47. 47.
    H. Pais, A. Sulaksono, B.K. Agrawal, C. Providência, Phys. Rev. C 93, 045802 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    C. Ducoin, J. Margueron, P. Chomaz, Nucl. Phys. A 809, 30 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    C.J. Horowitz, G. Shen, Phys. Rev. C 78, 015801 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949)ADSCrossRefGoogle Scholar
  51. 51.
    G. Baym, C.J. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)ADSCrossRefGoogle Scholar
  52. 52.
    G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971)ADSCrossRefGoogle Scholar
  53. 53.
    J. Antoniadis et al., Science 340, 6131 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    W.C.G. Ho, N. Andersson, Nat. Phys. 8, 787 (2012)CrossRefGoogle Scholar
  55. 55.
    G.G. Pavlov, V.E. Zavlin, D. Sanwal, V. Burwitz, G.P. Garmire, Astrophys. J. 552, L129 (2001)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • K. Madhuri
    • 1
    Email author
  • D. N. Basu
    • 2
  • T. R. Routray
    • 1
  • S. P. Pattnaik
    • 1
  1. 1.School of PhysicsSambalpur UniversityJyotiviharIndia
  2. 2.Variable Energy Cyclotron CenterKolkataIndia

Personalised recommendations