Advertisement

PANDORA, a new facility for interdisciplinary in-plasma physics

  • D. Mascali
  • A. MusumarraEmail author
  • F. Leone
  • F. P. Romano
  • A. Galatà
  • S. Gammino
  • C. Massimi
Open Access
Regular Article - Experimental Physics

Abstract.

PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment (e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

References

  1. 1.
    D. Leitner, C.M. Lyneis, The Physics and Technology of Ion Sources - ECR Ion Sources, edited by Ian G. Brown (Wiley and Sons, 2004)Google Scholar
  2. 2.
    Yu.V. Gott, Nuclear Fusion Suppl., Part 3, (IAEA, IOP, 1962) p. 1045Google Scholar
  3. 3.
    Thomas H. Stix, Waves in Plasmas (Springer Science and Business Media, 1992)Google Scholar
  4. 4.
    R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas (Institute of Physics Publishing, Bristol, 1996)Google Scholar
  5. 5.
    NSCL-MSU, Facility for Rare Isotope Beams (FRIB), http://www.frib.msu.edu/
  6. 6.
    The European Spallation Source (ESS), https://europeanspallationsource.se/
  7. 7.
    Multi-purpose Hybrid Research Reactor for high-tech Applications (MYRRHA), http://myrrha.sckcen.be/
  8. 8.
    T.A. Antaya, S. Gammino, Rev. Sci. Instrum. 65, 1723 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    D. Hitz et al., Rev. Sci. Instrum. 73, 509 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    National Centre of Oncological Hadrontherapy (CNAO), http://fondazionecnao.it/en/
  11. 11.
    S. Gammino, G. Ciavola, Plasma Sources Sci. Technol. 5, 19 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    T. Nakagawa, Rev. Sci. Instrum. 85, 02A935 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Gammino, L. Celona, D. Mascali, IEEE Trans. Nucl. Sci. 63, 1051 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    I.I. Bernstein, Phys. Rev. 109, 10 (1958)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Preinhaelter, V. Kopecky, J. Plasma Phys. 10, 1 (1973)ADSCrossRefGoogle Scholar
  16. 16.
    H.P. Laqua, Plasma Phys. Control. Fusion 49, R1 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    D. Mascali et al., Rev. Sci. Instrum. 87, 095109 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    G. Castro et al., Plasma Sources Sci. Technol. 26, 055019 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    D. Mascali et al., Nucl. Instrum. Methods A 653, 11 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    G. Castro et al., Appl. Surf. Sci. 272, 59 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, (The University of Chicago Press, 1984)Google Scholar
  22. 22.
    G.T. Emery, Annu. Rev. Nucl. Science 22, 165 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    Yu.A. Litvinov et al., Phys. Rev. Lett. 99, 262501 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    H. Geissel et al., Phys. Rev. Lett. 68, 3412 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    H. Irnich et al., Phys. Rev. Lett. 75, 4182 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    F. Bosch et al., Phys. Rev. Lett. 77, 5190 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    C. Rolfs, W. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 2005)Google Scholar
  28. 28.
    F.C. Barker, Nucl. Phys. A 707, 277 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    H. Assenbaum, K.L. Langanke, C. Rolfs, Z. Phys. A 327, 461 (1987)ADSGoogle Scholar
  30. 30.
    E.G. Adelberger et al., Rev. Mod. Phys. 195, 83 (2011)Google Scholar
  31. 31.
    C. Bertulani et al., J. Phys.: Conf. Ser. 703, 012007 (2016)Google Scholar
  32. 32.
    S. Typel, EAS Publ. Ser. 27, 185 (2007)CrossRefGoogle Scholar
  33. 33.
    A. Musumarra et al., Phys. Rev. C 64, 068801 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    G. Melin et al., J. Appl. Phys. 85, 4772 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    V. Mironov et al., Phys. Rev. Accel. Beams 12, 073501 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    V. Mironov et al., Phys. Rev. Accel. Beams 20, 013402 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    G.D. Shirkov, Plasma Sources Sci. Technol. 2, 250 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    M. Barbui et al., Phys. Rev. Lett. 111, 082502 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    A.V. Gruzinov, J.N. Bahcall, Astrophys. J. 490, 437 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    J.N. Bahcall, R. Ulrich, Rev. Mod. Phys. 60, 297 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    G. Bellini et al., Nature 512, 383 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    R.H. Cyburt et al., Phys. Rev. D 69, 123519 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    C. Broggini et al., J. Cosmol. Astropart. Phys. 6, 30 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    n_TOF Collaboration (M. Barbagallo, Musumarra et al.), Phys. Rev. Lett. 117, 152701 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    M. Grieser et al., Eur. Phys. J. ST 207, 1 (2012)CrossRefGoogle Scholar
  46. 46.
    V. Skalyga et al., Phys. Plasmas 22, 083509 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    S. Gammino et al., Plasma Sources Sci. Technol. 18, 045016 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    D. Mascali et al., Plasma Sources Sci. Technol. 22, 065006 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    D. Leitner et al., Rev. Sci. Instrum. 79, 033302 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    T. Ropponen et al., Nucl. Instrum. Methods Phys. Res. A 600, 525 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    E.A. Maugeri et al., JINST 12, P02016 (2017)CrossRefGoogle Scholar
  52. 52.
    D. Mascali et al., Eur. Phys. J. D 69, 27 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    G. Torrisi et al., J. Electromagn. Waves Appl. 28, 1085 (2014)CrossRefGoogle Scholar
  54. 54.
    U. Abbondanno et al., Phys. Rev. Lett. 93, 161103 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    K. Takahashi, K. Yokoi, Nucl. Phys. A 404, 578 (1983)ADSCrossRefGoogle Scholar
  56. 56.
    G. Ciavola et al., Nucl. Instrum. Methods Phys. Res. A 382, 186 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    W. Ratynski, F. Käppeler, Phys. Rev. C 37, 595 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    N. Patronis et al., Phys. Rev. C 69, 025803 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    E. Uberseder et al., Phys. Rev. Lett. 102, 151101 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    M. Segawa et al., Phys. Rev. C 76, 022802(R) (2007)ADSCrossRefGoogle Scholar
  61. 61.
    G. Michaud, Astrophys. J. 160, 641 (1970)ADSCrossRefGoogle Scholar
  62. 62.
    G. Alecian, M.J. Stift, Astron. Astrophys. 387, 271 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    F. Leone, M. Manfré, Astron. Astrophys. 320, 257 (1997)ADSGoogle Scholar
  64. 64.
    A. Maeder, G. Meynet, Astron. Astrophys. 422, 225 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    F. D’Antona et al., Astrophys. J. Lett. 543, L77 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    S.N. Shore, Astron. J. 94, 731 (1987)ADSCrossRefGoogle Scholar
  67. 67.
    H.J.G.L.M. Lamers, J.P. Cassinelli, Introduction to Stellar Winds (Cambridge Univ. Press, 1999)Google Scholar
  68. 68.
    F. Leone, arXiv:1704.03376 (2017)
  69. 69.
    G. Mathys, Astron. Astrophys. 236, 527 (1990)ADSGoogle Scholar
  70. 70.
    F. Leone et al., Astrophys. J. 151, 116 (2016)ADSGoogle Scholar
  71. 71.
    T. Shikama et al., Can. J. Phys. 89, 495 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    M. Viktorov et al., EPL 109, 65002 (2015)ADSCrossRefGoogle Scholar
  73. 73.
    F. Leone, Astron. Astrophys. 252, 198 (1991)ADSGoogle Scholar
  74. 74.
    C. Trigilio et al., Astrophys. J. 739, 10 (2001)CrossRefGoogle Scholar
  75. 75.
    E. Bulbul et al., Astrophys. J. 789, 13 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    A. Boyarsky et al., Phys. Rev. Lett. 113, 251301 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    L. Gu et al., Astron. Astrophys. 584, L11 (2015)ADSCrossRefGoogle Scholar
  78. 78.
    C. Shah et al., Astrophys. J. 833, 52 (2016)ADSCrossRefGoogle Scholar
  79. 79.
    G. Shirkov, Nucl. Instrum. Methods Phys. Res. A 322, 161 (1992)ADSCrossRefGoogle Scholar
  80. 80.
    D.H. Edgel et al., Phys. Rev. Accel. Beams 2, 123502 (1999)ADSCrossRefGoogle Scholar
  81. 81.
    G. Torrisi et al., Microw. Opt. Technol. Lett. 58, 2629 (2016)CrossRefGoogle Scholar
  82. 82.
    D. Mascali et al., Rev. Sci. Instrum. 83, 02A336 (2012)CrossRefGoogle Scholar
  83. 83.
    F.P. Romano et al., Anal. Chem. 86, 10892 (2014)CrossRefGoogle Scholar
  84. 84.
    D. Mascali et al., Rev. Sci. Instrum. 87, 02A510 (2016)CrossRefGoogle Scholar
  85. 85.
    R. Racz, D. Mascali, S. Biri et al., Plasma Sources Sci. Technol. 26, 075011 (2017)CrossRefGoogle Scholar
  86. 86.
    G. Torrisi et al., Rev. Sci. Instrum. 87, 02B909 (2016)CrossRefGoogle Scholar
  87. 87.
    D. Mascali et al., Rev. Sci. Instrum. 87, 095109 (2016)ADSCrossRefGoogle Scholar
  88. 88.
    R.G. Gratton et al., Exp. Astron. 12, 107 (2001)ADSCrossRefGoogle Scholar
  89. 89.
    G. Torrisi et al., Microw. Opt. Technol. Lett. 58, 2629 (2016)CrossRefGoogle Scholar
  90. 90.
    G. Catanzaro, F. Leone, Mon. Not. R. Astron. Soc. 373, 330 (2006)ADSCrossRefGoogle Scholar
  91. 91.
    The SPES Project at LNL-INFN, https://web.infn.it/spes/
  92. 92.
    M. Manzolaro et al., Rev. Sci. Instrum. 85, 02B918 (2014)CrossRefGoogle Scholar
  93. 93.
    M. Maggiore et al., Rev. Sci. Instrum. 85, 02B909 (2014)CrossRefGoogle Scholar
  94. 94.
    A. Galatá et al., Plasma Sources Sci. Technol. 25, 045007 (2016)ADSCrossRefGoogle Scholar
  95. 95.
    J. Neufeld, H. Wright, Phys. Rev. 129, 1489 (1963)ADSCrossRefGoogle Scholar
  96. 96.
    O. Tarvainen et al., Phys. Rev. Accel. Beams 19, 053402 (2016)ADSCrossRefGoogle Scholar
  97. 97.
    M. West et al., J. Anal. At. Spectrom. 25, 1503 (2010)CrossRefGoogle Scholar
  98. 98.
    I. Nakai, Y. Abe, Appl. Phys. A 106, 279 (2012)ADSCrossRefGoogle Scholar
  99. 99.
    J. Garrevoet et al., Anal. Chem. 87, 6544 (2015)CrossRefGoogle Scholar
  100. 100.
    A. Bianconi, XANES spectroscopy, in X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by D.C. Koningsberger, R.C. Prins (Wiley and Sons, 1988)Google Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • D. Mascali
    • 1
  • A. Musumarra
    • 1
    • 2
    Email author
  • F. Leone
    • 1
    • 2
    • 4
  • F. P. Romano
    • 1
    • 3
  • A. Galatà
    • 5
  • S. Gammino
    • 1
  • C. Massimi
    • 6
    • 7
  1. 1.INFN-Laboratori Nazionali del SudCataniaItaly
  2. 2.Department of Physics and AstronomyUniversity of CataniaCataniaItaly
  3. 3.CNR-IBAMCataniaItaly
  4. 4.INAF-OACTCataniaItaly
  5. 5.INFN-Laboratori Nazionali di LegnaroLegnaroItaly
  6. 6.Department of Physics and AstronomyUniversity of BolognaBolognaItaly
  7. 7.INFN-BolognaBolognaItaly

Personalised recommendations