Advertisement

Alpha-clustering effects on 16O(\(\gamma\),np)14N in the quasi-deuteron region

  • Bo-Song Huang
  • Yu-Gang Ma
  • Wan-Bing He
Regular Article - Theoretical Physics

Abstract.

Photonuclear reaction in the quasi-deuteron regime has been investigated in an extended Quantum Molecular Dynamics model at a photon energy of 70-120 MeV. Particularly, the reaction channel of 16O(\(\gamma\),np)14N is focused where 16O is considered as having different \(\alpha\)-clustering configurations as well as regular spherical structure. Because of three-body decay from the above photonuclear reaction, we can investigate many observables including the recoil momentum, missing energy, pair momentum/energy and opening angle of ejected neutron and proton, hyper-angle and hyper-radius distributions, etc. These quantitative results demonstrate an obvious difference among different initial configurations of 16O, which can be attributed to the spatial-momentum correlation of a neutron-proton pair inside the nucleus. The results illustrate that photonuclear reaction is a good tool to explore different \(\alpha\)-clustering structures.

References

  1. 1.
    H.R. Weller, A.W. Mohammad, H. Gao et al., Prog. Part. Nucl. Phys. 62, 257 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    D. Filipescu, A. Anzalone, D.L. Balabanski et al., Eur. Phys. J. A 51, 185 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    H.L. Wu, J.H. Chen, B. Liu et al., Nucl. Sci. Tech. 26, 050103 (2015)Google Scholar
  4. 4.
    W. Luo, D.L. Balabanski, D. Filipescu, Nucl. Sci. Tech. 27, 113 (2016)CrossRefGoogle Scholar
  5. 5.
    N. Muramatsu, J.Y. Chen, W.C. Chang et al., Phys. Rev. Lett. 103, 012001 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    T. Nakano, Nucl. Phys. A 721, 112C (2003)ADSCrossRefGoogle Scholar
  7. 7.
    H. Shimizu, N. Muramatsu, Nucl. Phys. News 27, 19 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Utsunomiya, S. Hashimoto, S. Miyamoto, Nucl. Phys. News 25, 25 (2015)CrossRefGoogle Scholar
  9. 9.
    Kurt A. Snorer, Annu. Rev. Nucl. Part. Sci. 36, 545 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    J.J. Gaardhoje, Annu. Rev. Nucl. Part. Sci. 42, 483 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    P. Adrich, A. Klimkiewicz, M. Fallot et al., Phys. Rev. Lett. 95, 132501 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Utsunomiya, S. Katayama, I. Gheorghe, S. Imai, H. Yamaguchi, D. Kahl, Y. Sakaguchi, T. Shima, K. Takahisa, S. Miyamoto, Phys. Rev. C 92, 064323 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    J.S. Levinger, Phys. Rev. 84, 43 (1951)ADSCrossRefGoogle Scholar
  14. 14.
    E.C. Simpson, J.A. Tostevin, Phys. Rev. C 83, 014605 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    K. Ikeda, N. Takigawa, H. Horiuchi, Prog. Theor. Phys. Suppl. E 68, 464 (1968)ADSCrossRefGoogle Scholar
  16. 16.
    W. Greiner, J.Y. Park, W. Scheid, Nuclear Molecules (World Scientific, Singapore, 1995)Google Scholar
  17. 17.
    W. von Oertzen, M. Freer, Y. Kanada-Enyo, Phys. Rep. 432, 43 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    W. von Oertzen, in Clusters in Nuclei, Vol. 1, edited by C. Beck, Lect. Notes Phys. 818 (Springer-Verlag, Berlin, Heidelberg, 2010) p. 109Google Scholar
  19. 19.
    M. Freer, Rep. Prog. Phys. 70, 2149 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    J.-P. Ebran, E. Khan, T. Niksic, D. Vretenar, Nature (London) 487, 341 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J.B. Natowitz, G. Röpke, S. Typel et al., Phys. Rev. Lett. 104, 202501 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kanada-Enyo, M. Kimura, F. Kobayashi, T. Suhara, Y. Taniguchi, Y. Yoshida, Nucl. Sci. Tech. 26, S20501 (2015)Google Scholar
  24. 24.
    Y. Kanada-En’yo, M. Kimura, in Clusters in Nuclei, Vol. 1, edited by C. Beck, Lect. Notes Phys. 818 (Springer-Verlag, Berlin, Heidelberg, 2010) p. 129Google Scholar
  25. 25.
    A. Tohsaki, H. Horiuchi, P. Schuck, G. Roepke, Rev. Mod. Phys. 89, 1 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Elhatisari, N. Li, A. Rokash, et al., Phys. Rev. Lett. 117, 132501 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, U.-G. Meißner, Nature (London) 528, 111 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    T. Ichikawa, J.A. Maruhn, N. Itagaki, S. Ohkubo, Phys. Rev. Lett. 107, 112501 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, A. Tohsaki, Phys. Rev. Lett. 112, 062501 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.-G. Meißner, G. Rupak, Phys. Rev. Lett. 112, 102501 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    R. Bijker, F. Iachello, Phys. Rev. Lett. 112, 152501 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    M. Girod, P. Schuck, Phys. Rev. Lett. 111, 132503 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    T. Yamada, P. Schuck, Phys. Rev. C 69, 024309 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Phys. Rev. Lett. 106, 192501 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    D.J. Marín-Lómbarri, R. Bijker, M. Freer, M. Gai, Tz. Kokalova, D.J. Parker, C. Wheldon, Phys. Rev. Lett. 113, 012502 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Bo Zhou, Y. Funaki, H. Horiuchi et al., Phys. Rev. Lett. 110, 262501 (2014)CrossRefGoogle Scholar
  37. 37.
    W.B. He, Y.G. Ma, X.G. Cao, X.Z. Cai, G.Q. Zhang, Phys. Rev. Lett. 113, 032506 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    T. Yamada, Y. Funaki, H. Horiuchi, G. Roepke, P. Schuck, A. Tohsaki, in Clusters in Nuclei, Vol. 2, edited by C. Beck, Lect. Notes Phys. 848 (Springer-Verlag, Berlin, Heidelberg, 2012) p. 229Google Scholar
  39. 39.
    W.B. He, X.G. Cao, Y.G. Ma et al., Nucl. Tech. 37, 100511 (2014) (in Chinese)Google Scholar
  40. 40.
    C.Q. Guo, Y.G. Ma, W.B. He, X.G. Cao, D.Q. Fang, X.G. Deng, C.L. Zhou, Phys. Rev. C 95, 054622 (2017)CrossRefGoogle Scholar
  41. 41.
    B.S. Huang, Y.G. Ma, W.B. He, Phys. Rev. C 95, 034606 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    T. Marayama, K. Niita, A. Iwamoto, Phys. Rev. C 53, 297 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    W.B. He, Y.G. Ma, X.G. Cao, X.Z. Cai, G.Q. Zhang, Phys. Rev. C 94, 014301 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    N. Curtis, S. Almaraz-Calderon, A. Aprahamian et al., Phys. Rev. C 88, 064309 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    J.S. Levinger, Phys. Lett. B 82, 181 (1979)ADSCrossRefGoogle Scholar
  46. 46.
    S.M. Doran et al., Nucl. Phys. A 559, 347 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    J.C. McGeorge, I.J.D. MacGregor, S.N. Dancer et al., Phys. Rev. C 51, 1976 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    Y. Futami, T. Miyazima, Prog. Theor. Phys. 46, 802 (1971)ADSCrossRefGoogle Scholar
  49. 49.
    Y. Futami, T. Miyazima, Prog. Theor. Phys. 45, 776 (1971)ADSCrossRefGoogle Scholar
  50. 50.
    P. Rossi, E. De Sanctis, P. Levi Sandri et al., Phys. Rev. C 40, 2412 (1989)ADSCrossRefGoogle Scholar
  51. 51.
    A.N. Gorbunov, V.M. Spiridonov, Sov. Phys. JETP 34, 600 (1958)Google Scholar
  52. 52.
    F. Balestra, L. Busso, R. Garfangnini et al., Nuovo Cimento A 49, 575 (1979)ADSCrossRefGoogle Scholar
  53. 53.
    Yu.A. Arkatov, A.V. Bazaeva, P.I. Vatset et al., Sov. J. Nucl. Phys. 10, 639 (1970)Google Scholar
  54. 54.
    H. Hebach, Lect. Notes Phys. 61, 407460 (1977)Google Scholar
  55. 55.
    J. Ahrens, H. Borchert, K.H. Czock, H.B. Eppler, H. Gimm, H. Gundrum, M. Kröning, P. Riehn, G. Sita Ram, A. Zieger, B. Ziegler, Nucl. Phys. A 251, 479 (1975)ADSCrossRefGoogle Scholar
  56. 56.
    P. Carlos et al., Nucl. Phys. A 378, 317 (1982)ADSCrossRefGoogle Scholar
  57. 57.
    I.J.D. McGeorge et al., Nucl. Phys. A 533, 269 (1991)ADSCrossRefGoogle Scholar
  58. 58.
    A. Tumino, A. Bonasera et al., Phys. Lett. B 750, 59 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    E. Braaten, H.W. Hammer et al., Phys. Rep. 428, 259 (2006)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    E. Nielsen, D.V. Fedorov, A.S. Jensen et al., Phys. Rev. 84, 43 (1951)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.ShanghaiTech UniversityShanghaiChina
  4. 4.Institute of Modern PhysicsFudan UniversityShanghaiChina

Personalised recommendations