Microscopic study of 1S0 superfluidity in dilute neutron matter

  • G. E. Pavlou
  • E. Mavrommatis
  • Ch. Moustakidis
  • J. W. Clark
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract.

Singlet S -wave superfluidity of dilute neutron matter is studied within the correlated BCS method, which takes into account both pairing and short-range correlations. First, the equation of state (EOS) of normal neutron matter is calculated within the Correlated Basis Function (CBF) method in the lowest cluster order using the 1S0 and 3P components of the Argonne \(V_{18}\) potential, assuming trial Jastrow-type correlation functions. The 1S0 superfluid gap is then calculated with the corresponding component of the Argonne \(V_{18}\) potential and the optimally determined correlation functions. The dependence of our results on the chosen forms for the correlation functions is studied, and the role of the P -wave channel is investigated. Where comparison is meaningful, the values obtained for the 1S0 gap within this simplified scheme are consistent with the results of similar and more elaborate microscopic methods.

References

  1. 1.
    A. Gezerlis, C.J. Pethick, A. Schwenk, Novel Superfluids, Vol. 2 edited by K.H. Bennemann, J.B. Ketterson (Oxford University Press, 2014) chapt. 22Google Scholar
  2. 2.
    W. Becker (Editor), Neutron Stars and Pulsars, in Astrophysics and Space Science Library, Vol. 357 (Springer-Verlag Berlin Heidelberg, 2009)Google Scholar
  3. 3.
    P. Haensel, A.Y. Potekhin, D.G. Yakovlev (Editors), Neutron Stars 1: Equation of State and Structure, in Astrophysics and Space Science Library, Vol. 326 (Springer-Verlag New York, 2007)Google Scholar
  4. 4.
    S. Gandolfi, A. Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    W.C.G. Ho, K.G. Elshamouty, C.O. Heinke, A.Y. Potekhin, Phys. Rev. C 91, 015806 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    V.A. Khodel, V.V. Khodel, J.W. Clark, Nucl. Phys. A 598, 390 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    A. Schwenk, B. Friman, G.E. Brown, Nucl. Phys. A 713, 191 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    S. Maurizio, J.W. Holt, P. Finelli, Phys. Rev. C 90, 044003 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    C. Drischler, T. Krüger, K. Hebeler, A. Schwenk, Phys. Rev. C 95, 024302 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    J. Wambach, T.L. Ainsworth, D. Pines, Nucl. Phys. A 555, 128 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Schulze, J. Cugnon, A. Lejeune, M. Baldo, U. Lombardo, Phys. Lett. B 375, 1 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    L.G. Cao, U. Lombardo, P. Schuck, Phys. Rev. C 74, 064301 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    J. Margueron, H. Sagawa, K. Hagino, Phys. Rev. C 77, 054309 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    J.M.C. Chen, J.W. Clark, R.D. Davé, V.V. Khodel, Nucl. Phys. A 555, 59 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    A. Fabrocini, S. Fantoni, A.Y. Illarionov, K.E. Schmidt, Phys. Rev. Lett. 95, 192501 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    A. Fabrocini, S. Fantoni, A.Y. Illarionov, K.E. Schmidt, Nucl. Phys. A 803, 137 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    H. Müther, W.H. Dickhoff, Phys. Rev. C 72, 054313 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    D. Ding, A. Rios, H. Dussan, W.H. Dickhoff, S.J. Witte, A. Carbone, A. Polls, Phys. Rev. C 94, 025802 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S. Gandolfi, A.Y. Illarionov, S. Fantoni, F. Pederiva, K.E. Schmidt, Phys. Rev. Lett. 101, 132501 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Gandolfi, A.Y. Illarionov, F. Pederiva, K.E. Schmidt, S. Fantoni, Phys. Rev. C 80, 045802 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    T. Abe, R. Seki, Phys. Rev. C 79, 054003 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A. Gezerlis, J. Carlson, Phys. Rev. C 77, 032801 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    A. Gezerlis, J. Carlson, Phys. Rev. C 81, 025803 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    E. Krotscheck, J.W. Clark, Nucl. Phys. A 333, 77 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    E. Krotscheck, R.A. Smith, A.D. Jackson, Phys. Rev. B 24, 6404 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    C.J. Horowitz, A. Schwenk, Phys. Lett. B 638, 153 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998) and references thereinADSCrossRefGoogle Scholar
  29. 29.
    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 75, 045804 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    M. Modarres, A. Tafrihi, Nucl. Phys. A 941, 212 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    J.W. Clark, L.R. Mead, E. Krotscheck, K.E. Kürten, M.L. Ristig, Nucl. Phys. A 328, 45 (1979)ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Clark, Prog. Part. Nucl. Phys. 2, 89 (1979)ADSCrossRefGoogle Scholar
  35. 35.
    I. Bombaci, A. Fabrocini, A. Polls, I. Vidaña, Phys. Lett. B 609, 232 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    J. Margueron, E. van Dalen, C. Fuchs, Phys. Rev. C 76, 034309 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    M. Baldo, C. Maieron, Phys. Rev. C 77, 015801 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    A. Schwenk, C.J. Pethick, Phys. Rev. Lett. 95, 160401 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, Phys. Rev. C 93, 024305 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Eur. Phys. J. A 40, 199 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    J. Carlson, J. Morales, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 68, 025802 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    S. Gandolfi, A.Y. Illarionov, K.E. Schmidt, F. Pederiva, S. Fantoni, Phys. Rev. C 79, 054005 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    A. Lovato, O. Benhar, S. Fantoni, A.Y. Illarionov, K.E. Schmidt, J. Phys. Conf. Ser. 336, 012016 (2011)CrossRefGoogle Scholar
  45. 45.
    O. Benhar, C.C. Degli Atti, A. Kallio, L. Lantto, P. Toropainen, Phys. Lett. B 60, 129 (1976)ADSCrossRefGoogle Scholar
  46. 46.
    G. Pavlou, Master's Thesis, University of Athens (2009)Google Scholar
  47. 47.
    R.B. Wiringa, S.C. Pieper, Phys. Rev. Lett. 89, 182501 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    E. Krotscheck (2017), private communicationGoogle Scholar
  49. 49.
    H.W. Hammer, A. Nogga, A. Schwenk, Rev. Mod. Phys. 85, 197 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    W. Zuo, Z. Li, G. Lu, J. Li, W. Scheid, U. Lombardo, H.J. Schulze, C. Shen, Phys. Lett. B 595, 44 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    X.R. Zhou, G.F. Burgio, U. Lombardo, H.J. Schulze, W. Zuo, Phys. Rev. C 69, 018801 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    J.W. Clark, Fifty Years of Nuclear BCS, edited by R.A. Broglia, V. Zelevinsky (World Scientific Publishing, 2013) chapt. 27Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • G. E. Pavlou
    • 1
  • E. Mavrommatis
    • 1
  • Ch. Moustakidis
    • 2
  • J. W. Clark
    • 3
    • 4
  1. 1.Physics Department, Division of Nuclear and Particle PhysicsNational and Kapodistrian University of AthensAthensGreece
  2. 2.Department of Theoretical PhysicsAristotelian University of ThessalonikiThessalonikiGreece
  3. 3.McDonnell Center for the Space Sciences and Department of PhysicsWashington UniversitySt. LouisUSA
  4. 4.Center for Mathematical SciencesUniversity of MadeiraFunchalPortugal

Personalised recommendations