Feasibility study of internal conversion electron spectroscopy of 229mTh

Abstract.

With an expected energy of 7.8(5) eV, the isomeric first excited state in 229Th exhibits the lowest excitation energy of all known nuclei. Until today, a value for the excitation energy has been inferred only by indirect measurements. In this paper we propose an experimental method that is potentially capable of measuring the ground-state transition energy via the detection of the internal conversion electrons. MatLab-based Monte Carlo simulations have been performed to obtain an estimate of the expected statistics and to test the feasibility and the expected precision of the experiment. From the simulations we conclude that with the presented methods an energy determination with a precision of better than 0.1 eV is within reach.

References

  1. 1

    B.R. Beck et al., Phys. Rev. Lett. 98, 142501 (2007)

    ADS  Article  Google Scholar 

  2. 2

    B.R. Beck, Proceedings of the 12th International Conference on Nuclear Reaction Mechanisms, Varenna, 2009, edited by F. Cerutti, A. Ferrari (CERN, 2010)

  3. 3

    E. Peik, Chr. Tamm, Europhys. Lett. 61, 181 (2003)

    ADS  Article  Google Scholar 

  4. 4

    C.J. Campbell et al., Phys. Rev. Lett. 108, 120802 (2012)

    ADS  Article  Google Scholar 

  5. 5

    L.v.d. Wense et al., Nature 533, 47 (2016)

    ADS  Article  Google Scholar 

  6. 6

    J. Jeet et al., Phys. Rev. Lett. 114, 253001 (2015)

    ADS  Article  Google Scholar 

  7. 7

    S. Stellmer et al., Phys. Rev. C 94, 014302 (2016)

    ADS  Article  Google Scholar 

  8. 8

    S.G. Porsev, V.V. Flambaum, E. Peik, Chr. Tamm, Phys. Rev. Lett. 105, 182501 (2010)

    ADS  Article  Google Scholar 

  9. 9

    A. Yamaguchi et al., New J. Phys. 17, 053053 (2015)

    ADS  Article  Google Scholar 

  10. 10

    G. Kazakov et al., Nucl. Instrum. Methods Phys. Res. A 735, 229 (2014)

    ADS  Article  Google Scholar 

  11. 11

    C.J. Campbell et al., Phys. Rev. Lett. 106, 223001 (2011)

    ADS  Article  Google Scholar 

  12. 12

    L.v.d. Wense, P.G. Thirolf, D. Kalb, M. Laatiaoui, J. Instrum. 8, P03005 (2013)

    Article  Google Scholar 

  13. 13

    V. Sonnenschein et al., Eur. Phys. J. A 48, 52 (2012)

    ADS  Article  Google Scholar 

  14. 14

    L.A. Kroger, C.W. Reich, Nucl. Phys. A 259, 29 (1976)

    ADS  Article  Google Scholar 

  15. 15

    C.W. Reich, R.G. Helmer, Phys. Rev. Lett. 64, 271 (1990)

    ADS  Article  Google Scholar 

  16. 16

    C.W. Reich, R.G. Helmer, Phys. Rev. C 49, 1845 (1994)

    ADS  Article  Google Scholar 

  17. 17

    E.V. Tkalya et al., Phys. Rev. C 61, 064308 (2000)

    ADS  Article  Google Scholar 

  18. 18

    F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Rev. C 76, 054313 (2007)

    ADS  Article  Google Scholar 

  19. 19

    B. Seiferle, L.v.d. Wense, M. Laatiaoui, P.G. Thirolf, Eur. Phys. J. D 70, 58 (2016)

    ADS  Article  Google Scholar 

  20. 20

    B. Seiferle, L.v.d. Wense, P.G. Thirolf, Phys. Rev. Lett. 118, 042501 (2017)

    ADS  Article  Google Scholar 

  21. 21

    S. Köhler et al., Spectrochim. Acta B 52, 717 (1997)

    ADS  Article  Google Scholar 

  22. 22

    L.v.d. Wense et al., Eur. Phys. J. A 51, 29 (2015)

    ADS  Article  Google Scholar 

  23. 23

    Y. Yamakita et al., Rev. Sci. Instrum. 71, 3042 (2000)

    ADS  Article  Google Scholar 

  24. 24

    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods B 268, 1818 (2010)

    ADS  Article  Google Scholar 

  25. 25

    M.P. Seah, W.A. Dench, Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  26. 26

    H.D. Hagstrum, Phys. Rev. 96, 325 (1954)

    ADS  Article  Google Scholar 

  27. 27

    H.D. Hagstrum, Phys. Rev. 104, 309 (1956)

    ADS  Article  Google Scholar 

  28. 28

    Y. Harada et al., Chem. Rev. 97, 1897 (1997)

    Article  Google Scholar 

  29. 29

    S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, 3rd edition (Springer, Berlin, 2003)

  30. 30

    M.G. Helander et al., Appl. Surf. Sci. 256, 2602 (2010)

    ADS  Article  Google Scholar 

  31. 31

    L. Devroye, Non-uniform Random Variate Generation (Springer, New York, 1986)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benedict Seiferle.

Additional information

Communicated by A. Jokinen

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seiferle, B., von der Wense, L. & Thirolf, P.G. Feasibility study of internal conversion electron spectroscopy of 229mTh. Eur. Phys. J. A 53, 108 (2017). https://doi.org/10.1140/epja/i2017-12294-5

Download citation